

Unity 5.x Cookbook

Over 100 recipes exploring the new and exciting features
of Unity 5 to spice up your Unity skill set

Matt Smith

Chico Queiroz

BIRMINGHAM - MUMBAI

Unity 5.x Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1280915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-136-2

www.packtpub.com

www.packtpub.com

Credits

Authors
Matt Smith

Chico Queiroz

Reviewer
Brian Gatt

Tommaso Lintrami

Robert Ollington

Commissioning Editor
Edward Bowkett

Acquisition Editor
Vinay Argekar

Content Development Editor
Ajinkya Paranjpe

Technical Editor
Rohith Rajan

Copy Editor
Yesha Gangani

Project Coordinator
Harshal Ved

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

Contributor
Bryan Griffiths

Foreword

Not so long ago developing professional quality games meant licensing an expensive game
engine (or writing one yourself) and hiring a small army of developers to use it. Today, game
engines like Unity have democratized game development to the point where you can simply
download the tools and start making the game of your dreams right away.

Well... kinda.

Having a powerful game creation tool is not the same thing as having the technical knowledge
and skills to use it effectively. I've been developing games and game tools professionally for
over 13 years. When I took the plunge into learning Unity development, I quickly found that
there was a huge amount of online documentation, tutorials and forum answers available for
Unity developers. This makes getting started with Unity development very easy. It's fantastic
that this information is out there, but it can also be quite fragmented. A lot of the time the
piece of the puzzle you are missing is buried 40 minutes into an hour-long tutorial video or
on the 15th page of a long forum thread. The hours you spend looking for these nuggets of
wisdom are time that would be better spent working on your game.

The beauty of the Unity 5.x Cookbook is that Matt and Chico have done the tedious legwork of
finding this information for you and distilled it into a neat collection of easy to follow step-by-step
recipes (and provided the scripts and complete working projects for you to download). Unity
development covers a vast range of topics, so the authors have sensibly focused on those areas
that almost all developers will encounter. If you're serious about developing great games and
tools with Unity, then you'll need to master just the kinds of topics you'll find in this book.

Getting started with Unity development is free and easy. When you're ready to take your skills
to the next level, this book is an easy and effective way to do it. It covers a great deal in its
hundreds of pages, and if you can master even half of what's here you'll be well on the way
to becoming a great Unity developer.

Chris Gregan
Founder & Developer
Fungus Ltd

http://www.fungusgames.com

http://www.fungusgames.com

About the Authors

Matt Smith is a computing academic from Dublin, Ireland. In 1983 Matt started computer
programming (on a ZX80) and for his 'O-level' computing certificate (aged 16) he submitted 2
games for his programming project work. In 1985 Matt wrote the lyrics, and was a member
of the band that played (and sang, sorry about that by the way) the music on the B-side of
the audio cassette carrying the computer game Confuzion (https://en.wikipedia.org/
wiki/Confuzion).

On a succession of scholarships he managed to spend almost 10 years as a full time student,
gaining BA (Hons), then MSc then PhD degrees in computing and artificial intelligence. He
then became a full-time lecturer. Having previously lectured full-time at Winchester University
and London's Middlesex University, since 2002 he has been at the Institute of Technology
Blanchardstown in Dublin (http://www.itb.ie/) where he is he is now senior lecturer
in computing.

Some of his previous Irish–French student team games can be found and played at
http://www.saintgermes.com (thanks for continuing to host these Guillem!). Matt was
one of the two technical experts for a recent multimedia European project for language and
cultural student work mobility (http://www.vocalproject.eu).

He studies and teaches Taekwon-Do with his two children, having been awarded his first
degree black belt in 2015 (he also runs his club's website at http://www.maynoothtkd.
com/). He is trying to learn Irish, so he will understand the report cards from his children's
Irish-speaking school. In occasional moments of free time he also tries to get better at
playing the piano and classical guitar.

Matt is a documentation author for the Fungus open source interactive storytelling plugin
for Unity (http://www.fungusgames.com). Matt also maintains a step-by-step open
source introduction to Unity 2D and 3D game programming on his public Github pages
(see https://www.github.com/dr-matt-smith/gravity-guy2D).

Matt's previous publications include a chapter in Serious Games and Edutainment
Applications (Springer 2011, ISBN: 1447121600), and contributions and editing of
several music education and artificial intelligence books.

https://en.wikipedia.org/wiki/Confuzion
https://en.wikipedia.org/wiki/Confuzion
http://www.itb.ie/
http://www.vocalproject.eu
http://www.maynoothtkd.com/
http://www.maynoothtkd.com/
http://www.fungusgames.com
https://www.github.com/dr-matt-smith/gravity-guy2D
http://www.saintgermes.com

Thanks to my family for all their support. Thanks also to my students, who
continue to challenge and surprise me with their enthusiasm for multimedia
and game development. Thanks also to the editors, reviewers, readers and
students who provided feedback and suggestions on how to improve the
first edition and drafts of this new edition.

A special mention to my parents in England, and my wife's Aunty Maureen in
County Mayo – here's another book for the family-authored bookshelves.

Finally, I would like to dedicate this book to my wife Sinéad and my children
Charlotte and Luke.

Chico Queiroz is a digital media designer from Rio de Janeiro, Brazil. Chico started his
career back in 2000, soon after graduating in Communications/Advertising (PUC-Rio), working
with advergames and webgames using Flash and Director at LocZ Multimedia, where he
contributed to the design and development of games for clients, such as Volkswagen and
Parmalat, along with some independent titles.

Chico has a master's degree in Digital Game Design (University for the Creative Arts, UK).
His final project was exhibited at events and festivals such as London Serious Games
Showcase and FILE. Chico has also published articles for academic conferences and
websites such as http://www.gameology.org, http://www.gamasutra.com,
and http://www.gamecareerguide.com.

He curated and organized an exhibition held at SBGames 2009, which explored the
connections between video games and art. SBGames is the annual symposium of the
Special Commission of Games and Digital Entertainment of the Computing Brazilian Society.

Chico currently works as a digital designer at the Tecgraf/PUC-Rio Institute for
Technical-Scientific Software Development, where he, among other responsibilities, uses
Unity to develop interactive presentations and concept prototypes for interactive visualization
software. He also works as a lecturer at PUC-Rio, teaching undergraduate design students 3D
modeling and technology/CG for games, in which Unity is used as the engine for the students'
projects. Additionally, Chico is a PhD student in design at the same institution.

http://www.gameology.org
http://www.gamasutra.com
http://www.gamecareerguide.com

I would like to thank my friends, family, and all who have made this book
possible and helped me along the way. Special thanks to:

Carl Callewaert and Jay Santos, from Unity, for their help with the Unity
beta access and explanations of Unity 5 capabilities; Morten, Anthony, and
Robertas, at Unity QA, for their help and support during beta testing; and
Aras Pranckevicius, for his illuminating work on Unity's new shader system.

The editors and technical reviewers from Packt, who have made this book
much better through their observations and advice.

All my coworkers from Tecgraf/PUC-Rio. Marcelo Gattass, the director, for his
continuing support and Eduardo Thadeu Corseuil, my manager, for giving
me the opportunity to use Unity in our interactive projects.

All my students and colleagues from the PUC-Rio Art & Design Department.
Special mentions to Rejane Spitz, my PhD tutor and the coordinator of the
Electronic Art Lab (LAE); Maria das Graças Chagas and my supervisor, João
de Sá Bonelli, for his encouragement; and everyone at LAE (especially Axel,
Clorisval, Leo, Levy, Pedro, Renan, and Wesley), for the constant exchange
of ideas.

Jon Weinbren, from the UK's National Film and Television School,
for constantly encouraging his former MA student.

Stefano Corazza and Chantel Benson, from Mixamo, for their extended
support.

Wes McDermott, from Allegorithmic, for his excellent material on
physically-based rendering.

Gabriel Williams, from ProCore3D, for his help with ProBuilder.

Aaron Brown, from PlaydotSound.com, for his decibel to float calculator.

Fachhochschule Würzburg-Schweinfurt MSc student Christian Petry, for his
NormalMap-Online service.

Every reader who gave us feedback on Unity 4.x Cookbook, Packt Publishing.

Finally, I would like to dedicate this book to my wife, Ana, and my daughters,
Alice and Olivia. Thank you for all your love and support.

About the Reviewers

Brian Gatt is a software developer who holds a bachelor's degree in computer science
and Artificial Intelligence from the University of Malta, and a master's degree in computer
games and entertainment from Goldsmiths, University of London. Having initially dabbled
with OpenGL at university, he has since developed an interest in graphics programming. In
his spare time, he likes to keep up with what the latest graphics APIs have to offer, native
C++ programming, and game development techniques.

Tommaso Lintrami started with programming on a Commodore VIC-20 back in 1982
when he was nine.

He is a multimedia and a game director, game designer, web and game developer. He has
17 years of work experience in many IT companies, starting initially as a web developer.

Tomasso later shifted to the video game industry, multimedia interactive installations and
dedicated software development, home and industrial automation.

Robert Ollington is a lecturer in the Discipline of Information and Communication
Technology, School of Engineering and ICT, University of Tasmania, Australia. His research is in
the fields of Reinforcement Learning, ANNs, Robotics and Sensing, and Games (Graphics and
Physics). His teaching includes units in programming, game design and game production.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

i

Table of Contents
Preface vii
Chapter 1: Core UI – Messages, Menus, Scores, and Timers 1

Introduction 2
Displaying a "Hello World" UI text message 6
Displaying a digital clock 8
Displaying a digital countdown timer 11
Creating a message that fades away 14
Displaying a perspective 3D text message 16
Displaying an image 18
Creating UI Buttons to move between scenes 22
Organizing images inside panels and changing panel depths via buttons 28
Displaying the value of an interactive UI Slider 32
Displaying a countdown timer graphically with a UI Slider 35
Displaying a radar to indicate the relative locations of objects 39
Creating UIs with the Fungus open-source dialog system 49
Setting custom mouse cursor images 52
Input Fields component for text entry 55
Toggles and radio buttons via Toggle Groups 59
Conclusion 62

Chapter 2: Inventory GUIs 65
Introduction 65
Creating a simple 2D mini-game – SpaceGirl 67
Displaying single object pickups with carrying and not-carrying text 73
Displaying single object pickups with carrying and not-carrying icons 80
Displaying multiple pickups of the same object with text totals 84
Displaying multiple pickups of the same object with multiple status icons 86

ii

Table of Contents

Revealing icons for multiple object pickups by changing the size
of a tiled image 90
Displaying multiple pickups of different objects as a list of text via
a dynamic List<> of PickUp objects 93
Displaying multiple pickups of different objects as text totals via
a dynamic Dictionary<> of PickUp objects and "enum" pickup types 98
Generalizing multiple icon displays using UI Grid Layout Groups
(with scrollbars!) 102
Conclusion 117

Chapter 3: 2D Animation 119
Introduction 119
Flipping a sprite horizontally 120
Animating body parts for character movement events 122
Creating a 3-frame animation clip to make a platform
continually animate 129
Making a platform start falling once stepped-on using a Trigger
to move animation from one state to another 131
Creating animation clips from sprite sheet sequences 136
Conclusion 139

Chapter 4: Creating Maps and Materials 141
Introduction 141
Creating a basic material with Standard Shader (Specular setup) 145
Adapting a basic material from Specular setup to Metallic 153
Applying Normal maps to a material 156
Adding Transparency and Emission maps to a material 161
Highlighting materials at mouse over 166
Adding Detail maps to a material 168
Fading the transparency of a material 173
Playing videos inside a scene 175
Conclusion 178

Chapter 5: Using Cameras 181
Introduction 181
Creating a picture-in-picture effect 183
Switching between multiple cameras 188
Making textures from screen content 191
Zooming a telescopic camera 196
Displaying a mini-map 200
Creating an in-game surveillance camera 207

iii

Table of Contents

Chapter 6: Lights and Effects 211
Introduction 211
Using lights and cookie textures to simulate a cloudy day 215
Adding a custom Reflection map to a scene 220
Creating a laser aim with Projector and Line Renderer 223
Reflecting surrounding objects with Reflection Probes 230
Setting up an environment with Procedural Skybox and Directional Light 237
Lighting a simple scene with Lightmaps and Light Probes 241
Conclusion 256

Chapter 7: Controlling 3D Animations 257
Introduction 258
Configuring a character's Avatar and idle animation 259
Moving your character with root motion and Blend Trees 265
Mixing animations with Layers and Masks 273
Organizing States into Sub-state Machines 280
Transforming the Character Controller via script 286
Adding rigid props to animated characters 291
Using Animation Events to throw an object 295
Applying Ragdoll physics to a character 298
Rotating the character's torso to aim a weapon 303

Chapter 8: Positions, Movement and Navigation for Character
GameObjects 309

Introduction 309
Player control of a 2D GameObject (and limiting the movement
within a rectangle) 311
Player control of a 3D GameObject (and limiting the movement
within a rectangle) 315
Choosing destinations – find the nearest (or a random) spawn point 320
Choosing destinations – respawn to the most recently
passed checkpoint 326
NPC NavMeshAgent to seek or flee destination while avoiding obstacles 328
NPC NavMeshAgent to follow the waypoints in a sequence 336
Controlling the object group movement through flocking 344
Conclusion 350

Chapter 9: Playing and Manipulating Sounds 351
Introduction 352
Matching the audio pitch to the animation speed 353
Simulating acoustic environments with Reverb Zones 358
Preventing an Audio Clip from restarting if it is already playing 361

iv

Table of Contents

Waiting for audio to finish playing before auto-destructing an object 363
Adding volume control with Audio Mixers 366
Making a dynamic soundtrack with Snapshots 375
Balancing in-game audio with Ducking 383

Chapter 10: Working with External Resource Files and Devices 391
Introduction 392
Loading external resource files – using Unity Default Resources 394
Loading external resource files – by downloading files from the Internet 397
Loading external resource files – by manually storing files in the
Unity Resources folder 400
Saving and loading player data – using static properties 403
Saving and loading player data – using PlayerPrefs 406
Saving screenshots from the game 409
Setting up a leaderboard using PHP/MySQL 412
Loading game data from a text file map 416
Managing Unity project code using Git version control and
GitHub hosting 421
Publishing for multiple devices via Unity Cloud 428

Chapter 11: Improving Games with Extra Features and
Optimization 433

Introduction 434
Pausing the game 435
Implementing slow motion 440
Preventing your game from running on unknown servers 444
State-driven behavior Do-It-Yourself states 446
State-driven behavior using the State Design pattern 452
Reducing the number of objects by destroying objects at death a time 457
Reducing the number of enabled objects by disabling objects
whenever possible 460
Reducing the number of active objects by making objects inactive
whenever possible 465
Improving efficiency with delegates and events and avoiding
SendMessage! 468
Executing methods regularly but independent of frame rate with
coroutines 472
Spreading long computations over several frames with coroutines 474
Evaluating performance by measuring max and min frame rates (FPS) 478
Identifying performance bottlenecks with the Unity performance Profiler 480

v

Table of Contents

Identifying performance "bottlenecks" with Do-It-Yourself
performance profiling 484
Cache GameObject and component references to avoid
expensive lookups 486
Improving performance with LOD groups 496
Improving performance through reduced draw calls by designing
for draw call batching 500
Conclusion 503

Chapter 12: Editor Extensions 507
Introduction 507
An editor extension to allow pickup type (and parameters) to be changed
at design time via a custom Inspector UI 508
An editor extension to add 100 randomly located copies of a prefab
with one menu click 520
A progress bar to display proportion completed of Editor extension
processing 524
An editor extension to have an object-creator GameObject, with buttons
to instantiate different pickups at cross-hair object location in scene 525
Conclusion 530

Index 531

vii

Preface
Game development is a broad and complex task. It is an interdisciplinary field, covering
subjects as diverse as artificial intelligence, character animation, digital painting, and
sound editing. All these areas of knowledge can materialize as the production of hundreds
(or thousands!) of multimedia and data assets. A special software application—the game
engine—is required to consolidate all of these assets into a single product.

Game engines are specialized pieces of software, which used to belong to an esoteric domain.
They were expensive, inflexible, and extremely complicated to use. They were for big studios or
hardcore programmers only. Then along came Unity.

Unity represents the true democratization of game development. It is an engine and
multimedia editing environment that is user-friendly and versatile. It has free and Pro versions;
the latter includes even more features. As we write this preface, Unity offers deployment to:

 f Mobile: Android, iOS, Windows Phone, and BlackBerry

 f Web: WebGL

 f Desktop: PC, Mac, and Linux platforms

 f Console: PS4, PS3, Xbox One, XBox 360, PlayStation Mobile, PlayStation Vita,
and Wii U

 f Virtual Reality (VR)/Augmented Reality (AR): Oculus Rift and Gear VR

Today, Unity is used by a diverse community of developers all around the world. Some are
students and hobbyists, but many are commercial organizations, ranging from garage
developers to international studios, who use Unity to make a huge number of games — some
you might have already played on one platform or another.

Preface

viii

This book provides over 100 Unity game development recipes. Some recipes demonstrate
Unity application techniques for multimedia features, including working with animations and
using preinstalled package systems. Other recipes develop game components with C# scripts,
ranging from working with data structures and data file manipulation, to artificial intelligence
algorithms for computer-controlled characters.

If you want to develop quality games in an organized and straightforward way, and want to
learn how to create useful game components and solve common problems, then both Unity
and this book are for you.

What this book covers
Chapter 1, Core UI – Messages, Menus, Scores, and Timers, is filled with UI (User Interface)
recipes to help you increase the entertainment and enjoyment value of your games through
the quality of the interactive visual elements. You'll learn a wide range of UI techniques,
including updatable text and images, directional radars, countdown timers, and custom
mouse cursors.

Chapter 2, Inventory GUIs, shows you how many games involve the player-collecting items,
such as keys to open doors, ammo for weapons, or choosing from a selection of items, such
as from a collection of spells to cast. The recipes in this chapter offer a range of text and
graphical solutions for displaying inventory status to the player, including whether they are
carrying an item or not, or the maximum number of items they are able to collect.

Chapter 3, 2D Animation, includes powerful 2D animation and physics features. In this
chapter, we present recipes to help you understand the relationships between the different
animation elements in Unity, exploring both the movement of different parts of the body
and the use of sprite-sheet image files that contain sequences of sprite frames pictures.

Chapter 4, Creating Maps and Materials, contains recipes that will give you a better
understanding of how to use maps and materials with Unity 5's new Physically Based
Shaders, whether you are a game artist or not. It is a great resource for exercising your
image editing skills.

Chapter 5, Using Cameras, explains recipes covering techniques for controlling and enhancing
your game's camera. This chapter will present interesting solutions to work with both single
and multiple cameras.

Chapter 6, Lights and Effects, offers a hands-on approach to a number Unity's lighting system
features, such as cookie textures, Reflection maps, Lightmaps, Light and Reflection probes,
and Procedural Skyboxes. Also, it demonstrates the use of Projectors.

Preface

ix

Chapter 7, Controlling 3D Animations, focuses on character animation, and demonstrates
how to take advantage of Unity's animation system — Mecanim. It covers a range of subjects
from basic character setup to procedural animation and ragdoll physics.

Chapter 8, Positions, Movement and Navigation for Character GameObjects, presents a
range of directional recipes for computer-controlled objects and characters, which can lead
to games with a richer and more exciting user experience. Examples of these recipes include
spawn points, checkpoints, and waypoints. It also includes examples that make groups of
objects flock together, and the use of Unity NavMeshes for automated path-finding over
terrains and around obstacles.

Chapter 9, Playing and Manipulating Sounds, is dedicated to making sound effects and
soundtrack music in your game more interesting. The chapter demonstrates how to
manipulate sound during runtime through the use of scripts, Reverb Zones, and Unity's
new Audio Mixer.

Chapter 10, Working with External Resource Files and Devices, throws light on how external
data can enhance your game in ways such as adding renewable content and communicating
with websites. The chapter also includes recipes on automating your builds with Unity Cloud,
and how to structure your projects, so they can be easily backed up using online version
control systems such as GitHub.

Chapter 11, Improving Games with Extra Features and Optimization, provides several recipes
with ideas for adding extra features to your game (such as adding slow motion and securing
online games). Many other recipes in this chapter provide examples of how to investigate and
potentially improve the efficiency and performance of your game's code.

Chapter 12, Editor Extensions, provides several recipes for enhancing design-time work in the
Unity Editor. Editor Extensions are scripting and multimedia components, that allows working
with custom text, UI presentation of the game parameters, data in the Inspector and Scene
panels, and custom menus and menu items. These can facilitate workflow improvements,
thus allowing game developers to achieve their goals quicker and easier.

What you need for this book
All you need is a copy of Unity 5.x, which can be downloaded for free from
http://www.unity3d.com.

If you wish to create your own image files for the recipes in Chapter 4, Creating Maps
and Materials, you will also need an image editor, such as Adobe Photoshop, which can
be found at http://www.photoshop.com, or GIMP, which is free and can be found at
http://www.gimp.org.

http://www.unity3d.com
http://www.photoshop.com
http://www.gimp.org

Preface

x

Who this book is for
This book is for anyone who wants to explore a wide range of Unity scripting and multimedia
features, and find ready-to-use solutions for many game features. Programmers can explore
multimedia features, and multimedia developers can try their hand at scripting.

From intermediate to advanced users, from artists to coders, this book is for you, and
everyone on your team!

It is intended for everyone who has the basics of using Unity, and a little programming
knowledge in C#.

Sections
In this book, you will find several headings that appear frequently.

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software,
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the
reader more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

xi

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, folder names, filenames, file extensions, pathnames, and user input are
shown as follows: " For this recipe, we have prepared the font that you need in a folder named
Fonts in the 1362_01_01 folder."

URLs are shown as follows: Learn more about the Unity UI on their manual pages at
http://docs.unity3d.com/Manual/UISystem.html.

A block of code is set as follows:

 void Start (){
 textClock = GetComponent<Text>();
 }

 void Update (){
 DateTime time = DateTime.Now;
 string hour = LeadingZero(time.Hour);
 string minute = LeadingZero(time.Minute);
 string second = LeadingZero(time.Second);

 textClock.text = hour + ":" + minute + ":" +
second;
 }

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In the Hierarchy panel, add a
UI | Text GameObject to the scene – choose menu: GameObject | UI | Text."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

http://docs.unity3d.com/Manual/UISystem.html

Preface

xii

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example codes and color images
All the files you need to complete the recipes in the book can be downloaded from:
https://github.com/dr-matt-smith/unity-5-cookbook-codes.

The downloadable codes are fully commented, and completed Unity projects for each recipe
are also provided. In addition you'll also find a folder containing the color images for each
chapter in this repository.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
https://github.com/dr-matt-smith/unity-5-cookbook-codes
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

xiii

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1

1
Core UI – Messages,
Menus, Scores, and

Timers

In this chapter, we will cover:

 f Displaying a "Hello World" UI text message

 f Displaying a digital clock

 f Displaying a digital countdown timer

 f Creating a message that fades away

 f Displaying a perspective 3D text message

 f Displaying an image

 f Creating UI Buttons to move between scenes

 f Organizing images inside panels and changing panel depths via buttons

 f Displaying the value of an interactive UI Slider

 f Displaying a countdown timer graphically with a UI Slider

 f Displaying a radar to indicate the relative locations of objects

 f Creating UIs with the Fungus open-source dialog system

 f Setting custom mouse cursor images

 f Input Fields component for text entry

 f Toggles and radio buttons via Toggle Groups

Core UI – Messages, Menus, Scores, and Timers

2

Introduction
A key element contributing to the entertainment and enjoyment of most games is the quality
of the visual experience, and an important part of this is the User Interface (UI). UI elements
involve ways for the user to interact with the game (such as buttons, cursors, text boxes, and
so on), as well as ways for the game to present up-to-date information to the user (such as the
time remaining, current health, score, lives left, or location of enemies). This chapter is filled
with UI recipes to give you a range of examples and ideas for creating game UIs.

The big picture
Every game is different, and so this chapter attempts to fulfill two key roles. The first aim is
to provide step-by-step instructions on how to create a wide range of the Unity 5 UI elements
and, where appropriate, associate them with game variables in code. The second aim is to
provide a rich illustration of how UI elements can be used for a variety of purposes, so that
you can get good ideas about how to make the Unity 5 UI set of controls deliver the particular
visual experience and interactions for the games that you are developing.

The basic UI elements can provide static images and text to just make the screen look more
interesting. By using scripts, we can change the content of these images and text objects, so
that the players' numeric scores can be updated, or we can show stickmen images to indicate
how many lives the player has left, and so on. Other UI elements are interactive, allowing
users to click on buttons, choose options, enter text, and so on. More sophisticated kinds
of UI can involve collecting and calculating data about the game (such as percentage time
remaining or enemy hit damage; or the positions and types of key GameObjects in the scene,
and their relationship to the location and orientation of the player), and then displaying these
values in a natural, graphical way (such as progress bars or radar screens).

Core GameObjects, components, and concepts relating to Unity UI development include:

 f Canvas: Every UI element is a child to a Canvas. There can be multiple Canvas
GameObjects in a single scene. If a Canvas is not already present, then one will
automatically be created when a new UI GameObject is created, with that UI object
childed to the new Canvas GameObject.

 f EventSystem: An EventSystem GameObject is required to manage the interaction
events for UI controls. One will automatically be created with the first UI element.

 f Panel: UI objects can be grouped together (logically and physically) with UI Panels.
Panels can play several roles, including providing a GameObject parent in the
Hierarchy for a related group of controls. They can provide a visual background image
to graphically relate controls on the screen, and they can also have scripted resize
and drag interactions added, if desired.

 f Visual UI controls: The visible UI controls themselves include Button, Image, Text,
Toggle, and so on.

Chapter 1

3

 f Interaction UI controls: These are non-visible components that are added to
GameObjects; examples include Input Field and Toggle Group.

 f The Rect Transform component: UI GameObjects can exist in a different space from
that of the 2D and 3D scenes, which cameras render. Therefore, UI GameObjects all
have the special Rect Transform component, which has some different properties
to the scene's GameObject Transform component (with its straightforward X/Y/Z
position, rotation, and scale properties). Associated with Rect Transforms are pivot
points (reference points for scaling, resizing, and rotations) and anchor points. Read
more about these core features below.

 f Sibling Depth: The bottom-to-top display order (what appears on the top of what) for
a UI element is determined initially by their sequence in the Hierarchy. At designtime,
this can be manually set by dragging GameObjects into the desired sequence
in the Hierarchy. At runtime, we can send messages to the Rect Transforms of
GameObjects to dynamically change their Hierarchy position (and therefore, the
display order), as the game or user interaction demands. This is illustrated in the
Organizing images inside panels and changing panel depths via buttons recipe
in this chapter.

The following diagram shows how there are four main categories of UI controls, each in a
Canvas GameObject and interacting via an EventSystem GameObject. UI Controls can have
their own Canvas, or several UI controls can be in the same Canvas. The four categories
are: static (display-only) and interactive UI controls, non-visible components (such as ones to
group a set of mutually exclusive radio buttons), and C# script classes to manage UI control
behavior through logic written in the program code. Note that UI controls that are not a child
or descendent of a Canvas will not work properly, and interactive UI controls will not work
properly if the EventSystem is missing. Both the Canvas and EventSystem GameObjects are
automatically added to the Hierarchy as soon as the first UI GameObject is added to a scene.

Core UI – Messages, Menus, Scores, and Timers

4

UI Rect Transforms represents a rectangular area rather than a single point, which is the
case for scene GameObject Transforms. Rect Transforms describe how a UI element should
be positioned and sized relatively to its parent. Rect Transforms have a width and height
that can be changed without affecting the local scale of the component. When the scale
is changed for the Rect Transform of a UI element, then this will also scale font sizes and
borders on sliced images, and so on. If all four anchors are at the same point, then resizing
the Canvas will not stretch the Rect Transform. It will only affect its position. In this case, we'll
see the Pos X and Pos Y properties, and the Width and Height of the rectangle. However, if
the anchors are not all at the same point, then Canvas resizing will result in a stretching of
the element's rectangle. So instead of the Width, we'll see the values for Left and Right—the
position of the horizontal sides of the rectangle to the sides of the Canvas, where the Width
will depend on the actual Canvas width (and the same for Top/Bottom/Height).

Unity provides a set of preset values for pivots and anchors, making the most common values
very quick and easy to assign to an element's Rect Transform. The following screenshot
shows the 3 x 3 grid that allows you quick choices about left, right, top, bottom, middle,
horizontal, and vertical values. Also, the extra column on the right offers horizontal stretch
presets, and the extra row at the bottom offers vertical stretch presets. Using the SHIFT and
ALT keys sets the pivot and anchors when a preset is clicked.

Chapter 1

5

The Unity manual provides a very good introduction to the Rect Transform. In addition,
Ray Wenderlich's two-part Unity UI web tutorial also presents a great overview of the Rect
Transform, pivots, and anchors. Both parts of Wenderlich's tutorial make great use of
animated GIFs to illustrate the effect of different values for pivots and anchors:

 f http://docs.unity3d.com/Manual/UIBasicLayout.html

 f http://www.raywenderlich.com/78675/unity-new-gui-part-1

There are three Canvas render modes:

 f Screen Space – Overlay: In this mode, the UI elements are displayed without any
reference to any camera (there is no need for any Camera in the scene). The UI
elements are presented in front of (overlaying) any sort of camera display of the
scene contents.

 f Screen Space – Camera: In this mode, the Canvas is treated as a flat plane in the
frustum (viewing space) of a Camera scene —where this plane is always facing the
camera. So, any scene objects in front of this plane will be rendered in front of the
UI elements on the Canvas. The Canvas is automatically resized if the screen size,
resolution, or camera settings are changed.

 f World Space: In this mode, the Canvas acts as a flat plane in the frustum (viewing
space) of a Camera scene—but the plane is not made to always face the Camera.
How the Canvas appears is just as with any other objects in the scene, relative to
where (if anywhere) in the camera's viewing frustum the Canvas plane is located
and oriented.

In this chapter, we have focused on the Screen Space – Overlay mode. But all these recipes
can equally be used with the other two modes as well.

Be creative! This chapter aims to act as a launching pad of ideas, techniques, and reusable
C# scripts for your own projects. Get to know the range of Unity UI elements, and try to
work smart. Often, a UI element exists with most of the components that you may need for
something in your game, but you may need to adapt it somehow. An example of this can
be seen in the recipe that makes a UI Slider non-interactive, instead using it to display a
red-green progress bar for the status of a countdown timer. See this in the Displaying a
countdown timer graphically with a UI Slider recipe.

http://docs.unity3d.com/Manual/UIBasicLayout.html
http://www.raywenderlich.com/78675/unity-new-gui-part-1

Core UI – Messages, Menus, Scores, and Timers

6

Displaying a "Hello World" UI text message
The first traditional problem to be solved with a new computing technology is often to display
the Hello World message. In this recipe, you'll learn to create a simple UI Text object with this
message, in large white text with a selected font, and in the center of the screen.

Getting ready
For this recipe, we have prepared the font that you need in a folder named Fonts in the
1362_01_01 folder.

How to do it...
To display a Hello World text message, follow these steps:

1. Create a new Unity 2D project.

2. Import the provided Fonts folder.

3. In the Hierarchy panel, add a UI | Text GameObject to the scene – choose menu:
GameObject | UI | Text. Name this GameObject Text-hello.

Alternatively, use the Create menu immediately below the
Hierarchy tab, choosing menu: Create | UI | Text.

4. Ensure that your new Text-hello GameObject is selected in the Hierarchy panel.
Now, in the Inspector, ensure the following properties are set:

 � Text set to read Hello World

 � Font set to Xolonium-Bold

 � Font size as per your requirements (large—this depends on your screen—try
50 or 100)

 � Alignment set to horizontal and vertical center

 � Horizontal and Vertical Overflow set to Overflow

 � Color set to white

Chapter 1

7

The following screenshot shows the Inspector panel with these settings:

5. Now, in the Rect Transform, click on the Anchor Presets square icon, which should
result in several rows and columns of preset position squares appearing. Hold down
SHIFT and ALT and click on the center one (row middle and column center).

6. Your Hello World text will now appear, centered nicely in the Game panel.

Core UI – Messages, Menus, Scores, and Timers

8

How it works...
You have added a new Text-hello GameObject to a scene. A parent Canvas and UI
EventSystem will also have been automatically created.

You set the text content and presentation properties, and use the Rect Transform anchor
presets to ensure that whatever way the screen is resized, the text will stay horizontally
and vertically centered.

There's more...
Here are some more details that you don't want to miss.

Styling substrings with Rich Text
Each separate UI Text component can have its own color, size, boldness styling, and so on.
However, if you wish to quickly add some highlighting style to a part of a string to be displayed
to the user, the following are examples of some of the HTML-style markups that are available
without the need to create separate UI Text objects:

 f Embolden text with the "b" markup: I am bold

 f Italicize text with the "i" markup: I am <i>italic</i>

 f Set the text color with hex values or a color name: I am <color=green>green
text</color>, but I am <color=#FF0000>red</color>

Learn more from the Unity online manual Rich Text page at:
http://docs.unity3d.com/Manual/StyledText.html.

Displaying a digital clock
Whether it is the real-world time, or perhaps an in-game countdown clock, many games are
enhanced by some form of clock or timer display. The most straightforward type of clock to
display is a string composed of the integers for hours, minutes, and seconds, which is what
we'll create in this recipe.

The following screenshot shows the kind of clock we will be creating in this recipe:

http://docs.unity3d.com/Manual/StyledText.html

Chapter 1

9

Getting ready
For this recipe, we have prepared the font that you need in a folder named Fonts in the
1362_01_01 folder.

How to do it...
To create a digital clock, follow these steps:

1. Create a new Unity 2D project.

2. Import the provided Fonts folder.

3. In the Hierarchy panel, add a UI | Text game object to the scene named Text-clock.

4. Ensure that GameObject Text-clock is selected in the Hierarchy panel. Now, in
Inspector, ensure that the following properties are set:

 � Text set to read as time goes here (this placeholder text will be replaced
by the time when the scene is running.)

 � Font type set to Xolonium Bold

 � Font Size set to 20

 � Alignment set to horizontal and vertical center

 � Horizontal and Vertical Overflow settings set to Overflow

 � Color set to white

5. Now, in the Rect Transform, click on the Anchor Presets square icon, which will
result in the appearance of several rows and columns of preset position squares.
Hold down SHIFT and ALT and click on the top and column center rows.

6. Create a folder named Scripts and create a C# script class called ClockDigital
in this new folder:
using UnityEngine;
using System.Collections;

using UnityEngine.UI;
using System;

public class ClockDigital : MonoBehaviour {
 private Text textClock;

 void Start (){
 textClock = GetComponent<Text>();
 }

Core UI – Messages, Menus, Scores, and Timers

10

 void Update (){
 DateTime time = DateTime.Now;
 string hour = LeadingZero(time.Hour);
 string minute = LeadingZero(time.Minute);
 string second = LeadingZero(time.Second);

 textClock.text = hour + ":" + minute + ":" +
second;
 }

 string LeadingZero (int n){
 return n.ToString().PadLeft(2, '0');
 }
}

7. With GameObject Text-clock selected in the Hierarchy panel, drag your
ClockDigital script onto it to add an instance of this script class as a component
to GameObject Text-clock, as shown in the following screenshot:

8. When you run the scene, you will now see a digital clock, showing hours, minutes,
and seconds, at the top-center part of the screen.

How it works...
You added a Text GameObject to a scene. You have added an instance of the ClockDigital
C# script class to that GameObject.

Notice that as well as the standard two C# packages (UnityEngine and System.
Collections) that are written by default for every new script, you have added the using
statements for two more C# script packages, UnityEngine.UI and System. The UI package
is needed, since our code uses UI Text object; and the System package is needed, since it
contains the DateTime class that we need to access the clock on the computer where our
game is running.

Chapter 1

11

There is one variable, textClock, which will be a reference to the Text component, whose text
content we wish to update in each frame with the current time in hours, minutes, and seconds.

The Start() method (executed when the scene begins) sets the textClock variable to
be a reference to the Text component in the GameObject, to which our scripted object has
been added.

Note that an alternative approach would be to make textClock a
public variable. This will allow us to assign it via drag-and-drop in
the Inspector panel.

The Update()method is executed in every frame. The current time is stored in the time
variable, and strings are created by adding leading zeros to the number values for the hours,
minutes, and seconds properties of variable time.

This method finally updates the text property (that is, the letters and numbers that the
user sees) to be a string, concatenating the hours, minutes, and seconds with colon
separator characters.

The LeadingZero(…)method takes as input an integer and returns a string of this number
with leading zeros added to the left, if the value was less than 10.

There's more...
There are some details that you don't want to miss.

The Unity tutorial for animating an analogue clock
Unity has published a nice tutorial on how to create 3D objects, and animate them through
C# script to display an analogue clock at https://unity3d.com/learn/tutorials/
modules/beginner/scripting/simple-clock.

Displaying a digital countdown timer
This recipe will show you how to display a digital countdown clock shown here:

Getting ready
This recipe adapts the previous one. So, make a copy of the project for the previous recipe,
and work on this copy.

For this recipe, we have prepared the script that you need in a folder named Scripts in the
1362_01_03 folder.

https://unity3d.com/learn/tutorials/modules/beginner/scripting/simple-clock
https://unity3d.com/learn/tutorials/modules/beginner/scripting/simple-clock

Core UI – Messages, Menus, Scores, and Timers

12

How to do it...
To create a digital countdown timer, follow these steps:

1. In the Inspector panel, remove the scripted component, ClockDigital, from
GameObject Text-clock.

2. Create a DigitalCountdown C# script class containing the following code,
and add an instance as a scripted component to GameObject Text-clock:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;
using System;

public class DigitalCountdown : MonoBehaviour {
 private Text textClock;

 private float countdownTimerDuration;
 private float countdownTimerStartTime;

 void Start (){
 textClock = GetComponent<Text>();
 CountdownTimerReset(30);
 }

 void Update (){
 // default - timer finished
 string timerMessage = "countdown has finished";
 int timeLeft = (int)CountdownTimerSecondsRemaining();

 if(timeLeft > 0)
 timerMessage = "Countdown seconds remaining = " +
LeadingZero(timeLeft);

 textClock.text = timerMessage;
 }

 private void CountdownTimerReset (float delayInSeconds){
 countdownTimerDuration = delayInSeconds;
 countdownTimerStartTime = Time.time;
 }

 private float CountdownTimerSecondsRemaining (){
 float elapsedSeconds = Time.time -
countdownTimerStartTime;

Chapter 1

13

 float timeLeft = countdownTimerDuration -
elapsedSeconds;
 return timeLeft;
 }

 private string LeadingZero (int n){
 return n.ToString().PadLeft(2, '0');
 }
}

3. When you run the scene, you will now see a digital clock counting down from 30.
When the countdown reaches zero, the message countdown has finished will
be displayed.

How it works...
You added a Text GameObject to a scene. You have added an instance of the
DigitalCountdown C# script class to that GameObject.

There is one variable, textClock, which will be a reference to the Text component, whose
text content we wish to update in each frame with a time remaining message (or a timer
complete message). Then, a call is made to the CountdownTimerReset(…) method,
passing an initial value of 30 seconds.

The Start() method (executed when the scene begins) sets the textClock variable to find
the Text component in the GameObject where our scripted object has been added.

The Update() method is executed in every frame. This method initially sets the
timerMessage variable to a message, stating that the timer has finished (the default message
to display). Then the seconds remaining are tested to be greater than zero. And if so, then the
message variable has its contents changed to display the integer (whole) number of the seconds
remaining in the countdown—retrieved from the CountdownTimerSecondsRemaining()
method. This method finally updates the text property (that is, the letters and numbers that
the user sees) to be a string with a message about the remaining seconds.

The CountdownTimerReset(…) method records the number of seconds provided, and the
time the method was called.

The CountdownTimerSecondsRemaining() method returns an integer value of the
number of seconds remaining.

Core UI – Messages, Menus, Scores, and Timers

14

Creating a message that fades away
Sometimes, we want a message to display just for a certain time, and then fade away and
disappear, which will appear as shown in this screenshot:

Getting ready
This recipe adapts the first recipe in this chapter, so make a copy of that project to work on for
this recipe.

For this recipe, we have prepared the script that you need in a folder named Scripts in the
1362_01_04 folder.

How to do it...
To display a text message that fades away, follow these steps:

1. Import the provided C# script class called CountdownTimer.

2. Ensure that GameObject Text-hello is selected in the Hierarchy tab. Then, attach an
instance of the CountdownTimer C# script class as a component of this GameObject.

3. Create a C# script class, FadeAway, containing the following code, and add an
instance as a scripted component to the GameObject Text-hello:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class FadeAway : MonoBehaviour {
 private CountdownTimer countdownTimer;
 private Text textUI;
 private int fadeDuration = 5;
 private bool fading = false;

 void Start (){
 textUI = GetComponent<Text>();
 countdownTimer = GetComponent<CountdownTimer>();

Chapter 1

15

 StartFading(fadeDuration);
 }

 void Update () {
 if(fading){
 float alphaRemaining =
countdownTimer.GetProportionTimeRemaining();
 print (alphaRemaining);
 Color c = textUI.material.color;
 c.a = alphaRemaining;
 textUI.material.color = c;

 // stop fading when very small number
 if(alphaRemaining < 0.01)
 fading = false;
 }
 }

 public void StartFading (int timerTotal){
 countdownTimer.ResetTimer(timerTotal);
 fading = true;
 }
}

4. When you run the scene, you will now see that the message on the screen slowly
fades away, disappearing after 5 seconds.

How it works...
An instance of the provided CountdownTimer script class was added as a component to the
GameObject Text-hello.

You added to the GameObject Text-hello an instance of the scripted class, FadeAway. The
Start()method caches references to the Text and CountdownTimer components in
the countdownTimer and textUI variables. Then, it calls the StartFading(…)method,
passing in the number 5, so that the message will have faded to invisible after 5 seconds.

The StartFading(…) method starts this timer scripted component to countdown to the
given number of seconds. It also sets the fading Boolean flag variable to true.

Core UI – Messages, Menus, Scores, and Timers

16

The Update() method, in each frame, tests if the fading variable is true. If it is true, then
the alpha (transparency) component of the color of the Text-hello object is set to a value
between 0.0 and 1.0, based on the proportion of the time remaining in the CountdownTimer
object. Finally, if the proportion of time remaining is less than a very small value (0.01), then the
fading variable is set to false (to save the processing work since the text is now invisible).

Displaying a perspective 3D text message
Unity provides an alternative way to display text in 3D via the TextMesh component. While
this is really suitable for a text-in-the-scene kind of situation (such as billboards, road signs,
and generally wording on the side of 3D objects that might be seen close up), it is quick to
create, and is another way of creating interesting menus or instructions scenes, and the like.

In this recipe, you'll learn how to create a scrolling 3D text, simulating the famous opening
credits of the movie Star Wars, which looks something like this:

Getting ready
For this recipe, we have prepared the fonts that you need in a folder named Fonts, and the
text file that you need in a folder named Text, in the 1362_01_04 folder.

Chapter 1

17

How to do it...
To display perspective 3D text, follow these steps:

1. Create a new Unity 3D project (this ensures that we start off with a Perspective
camera, suitable for the 3D effect that we want to create).

If you need to mix 2D and 3D scenes in your project, you can
always manually set any camera's Camera Projection property
to Perspective or Orthographic via the Inspector panel.

2. In the Hierarchy panel, select the Main Camera item, and, in the Inspector panel,
set its properties as follows: Camera Clear Flags to solid color, Field of View to 150.
Also set the Background color to black.

3. Import the provided Fonts folder.

4. In the Hierarchy panel, add a UI | Text game object to the scene – choose menu:
GameObject | UI | Text. Name this GameObject as Text-star-wars. Set its Text
Content as Star Wars (with each word on a new line). Then, set its Font to Xolonium
Bold, and its Font Size to 50. Use the anchor presets in Rect Transform to position
this UI Text object at the top center of the screen.

5. In the Hierarchy panel, add a 3D Text game object to the scene – choose menu:
GameObject | 3D Object | 3D Text. Name this GameObject Text-crawler.

6. In the Inspector panel, set the Transform properties for GameObject Text-crawler as
follows: Position (0, -300, -20), Rotation (15, 0, 0).

7. In the Inspector panel, set the Text Mesh properties for GameObject Text-crawler
as follows:

 � Paste the content of the provided text file, star_wars.txt, into Text.

 � Set Offset Z = 20, Line Spacing = 0.8, and Anchor = Middle center

 � Set Font Size = 200, Font = SourceSansPro-BoldIt

8. When the scene is made to run, the Star Wars story text will now appear nicely
squashed in 3D perspective on the screen.

How it works...
You have simulated the opening screen of the movie Star Wars, with a flat UI Text object title
at the top of the screen, and 3D Text Mesh with settings that appear to be disappearing into
the horizon with 3D perspective 'squashing'.

Core UI – Messages, Menus, Scores, and Timers

18

There's more...
There are some details that you don't want to miss.

We have to make this text crawl like it does in the movie
With a few lines of code, we can make this text scroll in the horizon just as it does in the movie.
Add the following C# script class, ScrollZ, as a component to GameObject Text-crawler:

using UnityEngine;
using System.Collections;

public class ScrollZ : MonoBehaviour {
 public float scrollSpeed = 20;

 void Update () {
 Vector3 pos = transform.position;
 Vector3 localVectorUp = transform.TransformDirection(0,1,0);
 pos += localVectorUp * scrollSpeed * Time.deltaTime;
 transform.position = pos;
 }
}

In each frame via the Update() method, the position of the 3D text object is moved in the
direction of this GameObject's local up-direction.

Where to learn more
Learn more about 3D Text and Text Meshes in the Unity online manual at
http://docs.unity3d.com/Manual/class-TextMesh.html.

NOTE: An alternative way of achieving perspective text like this would be to
use a Canvas with render mode World Space.

Displaying an image
There are many cases where we wish to display an image onscreen, including logos, maps,
icons, splash graphics, and so on. In this recipe, we will display an image at the top of the
screen, and make it stretch to fit whatever width that the screen is resized to.

http://docs.unity3d.com/Manual/class-TextMesh.html

Chapter 1

19

The following screenshot shows Unity displaying an image:

Getting ready
For this recipe, we have prepared the image that you need in a folder named Images in the
1362_01_06 folder.

How to do it...
To display a stretched image, follow these steps:

1. Create a new Unity 3D project.

3D projects will, by default, import images as a Texture, and 2D
projects will import images as Sprite (2D and UI). Since we're
going to use a RawImage UI component, we need our images to
be imported as textures.

2. Set the Game panel to a 400 x 300 size. Do this via menu: Edit | Project Settings
| Player. Ensure that the Resolution | Default is Full Screen setting check is
unchecked, and the width/height is set to 400 x 300. Then, in the Game panel,
select Stand Alone (400 x 300). This will allow us to test the stretching of our image
to a width of 400 pixels.

Core UI – Messages, Menus, Scores, and Timers

20

3. Import the provided folder, which is called Images. In the Inspector tab, ensure
that the unity5_learn image has Texture Type set to Texture. If it does not, then
choose Texture from the drop-down list, and click on the Apply button. The following
screenshot shows the Inspector tab with the Texture settings:

4. In the Hierarchy panel, add a UI | RawImage GameObject to the scene named
RawImage-unity5.

If you wish to prevent the distortion and stretching of an image,
then use the UI Sprite GameObject instead, and ensure that you
check the Preserve Aspect option, in its Image (Script) component,
in the Inspector panel.

5. Ensure that the GameObject RawImage-unity5 is selected in the Hierarchy panel.
From your Project folder (Images), drag the unity5_learn image into the
Raw Image (Script) public property Texture. Click on the Set Native Size button
to preview the image before it gets stretched, as shown:

6. Now, in Rect Transform, click on the Anchor Presets square icon, which will result
in several rows and columns of preset position squares appearing. Hold down SHIFT
and ALT and click on the top row and the stretch column.

7. The image will now be positioned neatly at the top of the Game panel, and will be
stretched to the full width of 400 pixels.

Chapter 1

21

How it works...
You have ensured that an image has Texture Type set to Texture. You added a UI RawImage
control to the scene. The RawImage control has been made to display the unity5_learn
image file.

The image has been positioned at the top of the Game panel, and using the anchor and pivot
presets, it has made the image stretch to fill the whole width, which we set to 400 pixels via
the Player settings.

There's more...
There are some details that you don't want to miss:

Working with Sprites and UI Image components
If you simply wish to display non-animated images, then Texture images and UI RawImage
controls are the way to go. However, if you want more options on how an image should be
displayed (such as tiling, and animation), then the UI Sprite control should be used instead.
This control needs image files to be imported as the Sprite (2D and UI) type.

Once an image file has been dragged into the UI Image control's Sprite property, additional
properties will be available, such as Image Type, options to preserve aspect ratio, and so on.

See also
An example of tiling a Sprite image can be found in the Revealing icons for multiple object
pickups by changing the size of a tiled image recipe in Chapter 2, Inventory GUIs.

Core UI – Messages, Menus, Scores, and Timers

22

Creating UI Buttons to move between
scenes

As well as scenes where the player plays the game, most games will have menu screens,
which display to the user messages about instructions, high scores, the level they have
reached so far, and so on. Unity provides the UI Buttons to make it easy to offer users a
simple way to indicate their choice of action on such screens.

In this recipe, we'll create a very simple game consisting of two screens, each with a button
to load the other one, similar to the following screenshot:

How to do it...
To create a button-navigable multi-scene game, follow these steps:

1. Create a new Unity 2D project.

2. Save the current (empty) scene, naming it page1.

3. Add a UI Text object positioned at the top center of the scene, containing text
Main Menu / (page 1) in a large font size.

4. Add a UI Button to the scene positioned in the middle center of the screen. In the
Hierarchy panel, click on the show children triangle to display the UI Text child of this
button GameObject. Select the Text button-child GameObject, and in the Inspector
panel for the Text property of the Text (Script) component, enter the button text
called goto page 2, as shown here:

Chapter 1

23

5. Add the current scene to the build, choosing menu: File | Build Settings…. Then,
click on the Add Current button so that the page1 scene becomes the first scene
on the list of Scenes in the Build.

We cannot tell Unity to load a scene that has not been added
to the list of scenes in the build. We use the Application.
LoadLevel(…)code to tell Unity to load the scene name (or
numeric index) that is provided.

6. Create a C# script class, MenuActions, containing the following code, and add an
instance as a scripted component to the Main Camera:
using UnityEngine;
using System.Collections;

public class MenuActions : MonoBehaviour {
 public void MENU_ACTION_GotoPage(string sceneName){
 Application.LoadLevel(sceneName);
 }
}

7. Ensure that the Button is selected in the Hierarchy and click on the plus sign "+"
button at the bottom of the Button (Script) component, in the Inspector view, to
create a new OnClick event handler for this button.

8. Drag the Main Camera from the Hierarchy over the Object slot—immediately
below the menu saying Runtime Only. This means that when the Button receives
an OnClick event, we can call a public method from a scripted object inside the
Main Camera.

Core UI – Messages, Menus, Scores, and Timers

24

9. Now, select the MENU_ACTION_GotoPage() method from the MenuActions
drop-down list (initially showing No Function). Type page2 (the name of the scene
we want to be loaded when this button is clicked) in the text box, below the method's
drop-down menu. This page2 string will be passed to the method when the button
receives an OnClick event message, as shown here:

10. Save the current scene, create a new empty scene, and then save this new scene
as page2.

11. Follow the similar steps for this scene. Add a UI Text GameObject, displaying the
text Instructions / (page 2) in a large font size. Add a UI Button, showing the
goto page 1 text.

12. Add the current scene to the build (so now, both page1 and page2 will be listed
in the build).

13. Add an instance of MenuActions script class to the Main Camera.

14. Select the Button in the Hierarchy panel, and add an On Click event handler, which
will pass the MENU_ACTION_GotoPage() method the string page1 (the name of the
scene we want to be loaded when this button is clicked).

Chapter 1

25

15. Save the scene.

16. When you run the page1 scene, you will be presented with your Main Menu text
and a button, which when clicked, makes the game load the page2 scene. On scene
page2, you'll have a button to take you back to page1.

How it works...
You have created two scenes, and added both of them to the game build. Each scene
has a button, which when clicked (when the game is playing), makes Unity load the (named)
other scene. This is made possible because when each button is clicked, it runs the MENU_
ACTION_GotoPage(…)method from the scripted MenuActions component inside the
Main Camera. This method inputs a text string of the name of the scene to be loaded, so that
the button in the page1 scene gives the string name of page2 as the scene to be loaded, and
vice versa.

When a UI Button is added to the Hierarchy panel, a child UI Text object is also automatically
created, and the content of the Text property of this UI Text child is the text that the user
sees on the button.

There's more...
There are some details that you don't want to miss.

Visual animation for the button mouse-over
There are several ways in which we can visually inform the user that the button is interactive
when they move their mouse cursor over it. The simplest is to add a color tint that will appear
when the mouse is over the button—this is the default Transition. With the Button selected in
the Hierarchy, choose a tint color (for example, red), for the Highlighted Color property of the
Button (Script) component, in the Inspector tab, as shown here:

Core UI – Messages, Menus, Scores, and Timers

26

Another form of visual Transition to inform the user of an active button is Sprite Swap. In
this case, properties for different images for Targeted/Highlighted/Pressed/Disabled are
available in the Inspector tab. The default Targeted Graphic is the built-in Unity Button
(image) – this is the grey rounded rectangle default when GameObjects buttons are created.
Dragging in a very different-looking image for the Highlighted Sprite is an effective alternative
to set a color hint. We have provided a rainbow.png image with the project for this recipe
that can be used for the Button mouse over Highlighted Sprite. The following screenshot
shows the button with this rainbow background image:

Animating button properties on mouse over
Finally, animations can be created for dynamically highlighting a button to the user, for
example, a button might get larger when the mouse is over it, and then it might shrink back
to its original size when the mouse pointer is moved away. These effects are achieved by
choosing the Animation option for the Transition property, and by creating an animation
controller with triggers for the Normal, Highlighted, Pressed and Disabled states. To animate
a button for enlargement when the mouse is over it (the highlighted state), do the following:

1. Create a new Unity 2D project.

2. Create a button.

3. In the Inspector Button (Script) component, set the Transition property
to Animation.

4. Click the Auto Generate Animation button (just below the Disabled Trigger property)
for the Button (Script) component, as shown here:

5. Save the new controller by naming it button-animation-controller.

Chapter 1

27

6. Ensure that the Button GameObject is selected in the Hierarchy. Then, in the
Animation panel, select the Highlighted clip from the drop-down menu, as shown here:

7. In the Animation panel, click on the red record circle button, and then click on
the Add Property button, choosing to record changes to the Rect Transform |
Scale property.

8. Two key frames will have been created, delete the second one at 1:00
(since we don't want a "bouncing" button), as shown in the following screenshot .

9. Select the first key frame at 0:00 (the only one now!). Then, in the Inspector view,
set the X and Y scale properties of the Rect Transform component to (1.2, 1.2).

10. Finally, click on the red record circle button for the second time to end the recording
of the animation changes.

11. Save and run your scene, and you will see that the button smoothly animates to get
larger when the mouse is over it, and then smoothly returns to its original size when
the mouse is moved away.

The following web pages offer video and web-based tutorials on UI animations:

 f The Unity button transitions tutorial is available at:
http://unity3d.com/learn/tutorials/modules/beginner/ui/ui-
transitions

 f Ray Wenderlich's tutorial (part 2), including the button animations, is available at:
http://www.raywenderlich.com/79031/unity-new-gui-tutorial-
part-2

http://unity3d.com/learn/tutorials/modules/beginner/ui/ui-transitions
http://unity3d.com/learn/tutorials/modules/beginner/ui/ui-transitions
http://www.raywenderlich.com/79031/unity-new-gui-tutorial-part-2
http://www.raywenderlich.com/79031/unity-new-gui-tutorial-part-2

Core UI – Messages, Menus, Scores, and Timers

28

Organizing images inside panels and
changing panel depths via buttons

UI Panels are provided by Unity to allow UI controls to be grouped and moved together, and
also to visually group elements with an Image background (if desired). The sibling depth is
what determines which UI elements will appear above or below others. We can see the sibling
depth explicitly in the Hierarchy, since the top-to-bottom sequence of UI GameObjects in the
Hierarchy sets the sibling depth. So, the first item has a depth of 1, the second has a depth
of 2, and so on. The UI GameObjects with larger sibling depths (further down the Hierarchy)
appear above the UI GameObjects with lower sibling depths.

In this recipe, we'll create three UI panels, each showing a different playing card image.
We'll also add four triangle arrangement buttons to change the display order (move to
bottom, move to top, move up one, and move down one).

Getting ready
For this recipe, we have prepared the images that you need in a folder named Images in the
1362_01_08 folder.

How to do it...
To create the UI Panels whose layering can be changed by the user-clicking buttons, follow
these steps:

1. Create a new Unity 2D project.

2. Create a new UI Panel named Panel-jack-diamonds. Position it in the
middle-center part of the screen, and size it 200 pixels wide by 300 pixels high.
Uncheck the Image (Script) component for this panel (since we don't want to
see the default semi-transparent rectangular grey background image of a panel).

Chapter 1

29

3. Create a new UI Image, and child this image to Panel-jack-diamonds.

4. Position the Panel-jack-diamonds image at center-middle, and size it to 200 x 300.
Drag the Jack-of-diamonds playing card image into the Source Image property, for
the Image (Script) component in the Inspector tab.

5. Create a UI Button named Button-move-to-front. Child this button to Panel-jack-
diamonds. Delete the Text child GameObject of this button (since we'll use an icon
to indicate what this button does).

6. Size the Button-move-to-front button to 16 x 16, and position it top-center of the
player card image, so that it can be seen at the top of the playing card. Drag the
icon_move_to_front arrangement triangle icon image into the Source Image
property, for the Image (Script) component, in the Inspector view.

7. Ensure that the Button-move-to-front button is selected in the Hierarchy. Then, click
on the plus sign (+) at the bottom of the Button (Script) component, in the Inspector
view to create a new OnClick event handler for this button.

8. Drag Panel-jack-diamonds from the Hierarchy over the Object slot (immediately
below the menu saying Runtime Only).

9. Now, select the RectTransform.SetAsLastSibling method from the drop-down
function list (initially showing No Function).

This means that when the Button receives an OnClick event, the
RectTransform of the Panel will be sent the SetAsLastSibling message – this
will move the Panel to the bottom of the GameObjects in the Canvas, and
therefore will move this Panel in front of all other GameObjects in the Canvas.

Core UI – Messages, Menus, Scores, and Timers

30

10. Repeat step 2; create a second Panel with a move-to-front button. Name this second
Panel Panel-2-diamonds, then move and position it slightly to the right of Panel-jack-
diamonds, allowing both the move-to-front buttons to be seen.

11. Save your scene and run the game. You will be able to click the move-to-front button
on either of the cards to move that card's panel to the front. If you run the game with
the Game panel not maximized, you'll actually see the panels changing order in the
list of the children of the Canvas in the Hierarchy.

How it works...
You've created two UI Panels, each panel containing an image of a playing card and a button
whose action will make its parent panel move to the front. The button's action illustrates
how the OnClick function does not have to be the calling of a public method of a scripted
component of an object, but it can be sending a message to one of the components of
the targeted GameObject—in this instance we send the SetAsLastSibling message to the
RectTransform of the Panel in which the Button is located.

There's more...
There are some details that you don't want to miss.

Moving up or down by just one position, using scripted methods
While the Rect Transform offers a useful SetAsLastSibling (move to front) and
SetAsFirstSibling (move to back), and even SetSiblingIndex (if we knew exactly what position
in the sequence to type in), there isn't a built-in way to make an element move up or down, just
a single position in the sequence of GameObjects in the Hierarchy panel. However, we can write
two straightforward methods in C# to do this, and we can add buttons to call these methods,
providing full control of the top-to-bottom arrangement of the UI controls on the screen. To
implement four buttons (move-to-front/move-to-back/up one/down one), do the following:

1. Create a C# script class called ArrangeActions, containing the following code, and
add an instance as a scripted component to each of your Panels:
using UnityEngine;
using UnityEngine.UI;
using UnityEngine.EventSystems;
using System.Collections;

public class ArrangeActions : MonoBehaviour {
 private RectTransform panelRectTransform;

Chapter 1

31

 void Start(){
 panelRectTransform = GetComponent<RectTransform>();
 }

 public void MoveDownOne(){
 print ("(before change) " + GameObject.name + "
sibling index = " + panelRectTransform.GetSiblingIndex());

 int currentSiblingIndex =
panelRectTransform.GetSiblingIndex();
 panelRectTransform.SetSiblingIndex(currentSiblingIndex
- 1);

 print ("(after change) " + GameObject.name + " sibling
index = " + panelRectTransform.GetSiblingIndex());
 }

 public void MoveUpOne(){
 print ("(before change) " + GameObject.name + "
sibling index = " + panelRectTransform.GetSiblingIndex());

 int currentSiblingIndex =
panelRectTransform.GetSiblingIndex();
 panelRectTransform.SetSiblingIndex(currentSiblingIndex
+ 1);

 print ("(after change) " + GameObject.name + " sibling
index = " + panelRectTransform.GetSiblingIndex());
 }
}

2. Add a second button to each card panel, this time, using the arrangement triangle
icon image called icon_move_to_front, and set the OnClick event function for
these buttons to SetAsFirstSibling.

3. Add two further buttons to each card panel with the up and down triangle icon
images: icon_down_one and icon_up_one. Set the OnClick event handler
function for the down-one buttons to call the MoveDownOne() method, and set
the functions for the up-one buttons to call the MoveUpOne() method.

4. Copy one of the panels to create a third card (this time showing the Ace of diamonds).
Arrange the three cards so that you can see all four buttons for at least two of the
cards, even when those cards are at the bottom (see the screenshot at the beginning
of this recipe).

5. Save the scene and run your game. You will now have full control over the layering of
the three card panels.

Core UI – Messages, Menus, Scores, and Timers

32

Displaying the value of an interactive
UI Slider

This recipe illustrates how to create an interactive UI Slider, and execute a C# method each
time the user changes the Slider value.

How to do it...
To create a UI Slider and display its value on the screen, follow these steps:

1. Create a new 2D project.

2. Add a UI Text GameObject to the scene with a Font size of 30 and placeholder text
such as slider value here (this text will be replaced with the slider value when
the scene starts).

3. In the Hierarchy panel, add a UI | Slider game object to the scene—choose the
menu: GameObject | UI | Slider.

4. In the Inspector tab, modify settings for the Rect Transform to position the slider on
the top-middle part of the screen and the text just below it.

5. In the Inspector tab, set the Min Value of the slider to 0, the Max Value to 20, and
check the Whole Numbers checkbox, as shown here:

Chapter 1

33

6. Create a C# script class called SliderValueToText, containing the following code,
and add an instance as a scripted component to the GameObject called Text:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class SliderValueToText : MonoBehaviour {
 public Slider sliderUI;
 private Text textSliderValue;

 void Start (){
 textSliderValue = GetComponent<Text>();
 ShowSliderValue();
 }

 public void ShowSliderValue () {
 string sliderMessage = "Slider value = " +
sliderUI.value;
 textSliderValue.text = sliderMessage;
 }
}

7. Ensure that the Text GameObject is selected in the Hierarchy. Then, in the Inspector
view, drag the Slider GameObject into the public Slider UI variable slot for the
Slider Value To Text (Script) scripted component, as shown here:

8. Ensure that the Slider GameObject is selected in the Hierarchy. Then, in the
Inspector view, drag the Text GameObject into the public None (Object) slot for the
Slider (Script) scripted component, in the section for On Value Changed (Single).

Core UI – Messages, Menus, Scores, and Timers

34

You have now told Unity to which object a message should be sent
each time the slider is changed.

9. From the drop-down menu, select SliderValueToText and the ShowSliderValue()
method, as shown in the following screenshot. This means that each time the slider
is updated, the ShowSliderValue()method, in the scripted object, in GameObject
Text will be executed.

10. When you run the scene, you will now see a slider. Below it, you will see a text
message in the Slider value = <n> form.

11. Each time the slider is moved, the text value shown will be (almost) instantly updated.
The values should range from 0 (the leftmost of the slider) to 20 (the rightmost
of the slider).

The update of the text value on the screen probably won't be instantaneous,
as in happening in the same frame as the slider value is moved, since there is
some computation involved in the slider deciding that an On Value Changed
event message needs to be triggered, and then looking up any methods of
objects that are registered as event handlers for such an event. Then, the
statements in the object's method need to be executed in sequence. However,
this should all happen within a few milliseconds, and should be sufficiently
fast enough to offer the user a satisifyingly responsive UI for interface actions
such as changing and moving this slider.

Chapter 1

35

How it works...
You have added to the Text GameObject a scripted instance of the SliderValueToText class.

The Start() method, which is executed when the scene first runs, sets the variable to be
a reference to the Text component inside the Slider item. Next, the ShowSliderValue()
method is called, so that the display is correct when the scene begins (the initial slider value
is displayed).

This contains the ShowSliderValue() method, which gets the value of the slider. It updates
the text displayed to be a message in the form: Slider value = <n>.

You created a UI Slider GameObject, and set it to be whole numbers in the 0-20 range.

You added to the UI Slider GameObject's list of On Value Changed event listeners the
ShowSliderValue() method of the SliderValueToText scripted component. So, each
time the slider value changes, it sends a message to call the ShowSliderValue() method,
and so the new value is updated on the screen.

Displaying a countdown timer graphically
with a UI Slider

There are many cases where we wish to inform the player of the proportion of time remaining,
or at the completion of some value at a point in time, for example, a loading progress bar, the
time or health remaining compared to the starting maximum, how much the player has filled
up their water bottle from the fountain of youth, and so on. In this recipe, we'll illustrate how to
remove the interactive 'handle' of a UI Slider, and change the size and color of its components
to provide us with an easy-to-use, general purpose progress/proportion bar. In this recipe,
we'll use our modified slider to graphically present to the user how much time remains for
a countdown timer.

Core UI – Messages, Menus, Scores, and Timers

36

Getting ready
This recipe adapts the previous one. So, make a copy of the project for the previous recipe,
and work on this copy to follow this recipe.

For this recipe, we have prepared the script and images that you need in the folders named
Scripts and Images in the 1362_01_10 folder.

How to do it...
To create a digital countdown timer with a graphical display, follow these steps:

1. Delete the Text GameObject.

2. Import the CountdownTimer script and the red_square and green_square
images to this project.

3. Ensure that the Slider GameObject is selected in the Hierarchy tab.

4. Deactivate the Handle Slide Area child GameObject (by unchecking it)

5. You'll see the "drag circle" disappear in the Game panel (the user will not be
dragging the slider, since we want this slider to be display-only), as shown in
the following screenshot:

6. Select the Background child:

 � Drag the red_square image into the Source Image property of the Image
(Script) component in the Inspector view

7. Select the Fill child:

 � Drag the green_square image into the Source Image property of the
Image (Script) component in the Inspector tab

Chapter 1

37

8. Select the Fill Area child:

 � In the Rect Transform component, use the Anchors preset position of
left-middle

 � Set Width to 155 and Height to 12, as shown here:

9. Ensure that the Slider GameObject is selected in the Hierarchy. Then, attach
an instance of C# script class called CountdownTimer as a component of
this GameObject.

10. Create a C# script class called SliderTimerDisplay containing the following code,
and add an instance as a scripted component to the Slider GameObject:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class SliderTimerDisplay : MonoBehaviour {
 private CountdownTimer countdownTimer;
 private Slider sliderUI;
 private int startSeconds = 30;

 void Start (){
 SetupSlider();
 SetupTimer();
 }

 void Update () {
 sliderUI.value =
countdownTimer.GetProportionTimeRemaining();

Core UI – Messages, Menus, Scores, and Timers

38

 print (countdownTimer.GetProportionTimeRemaining());
 }

 private void SetupSlider (){
 sliderUI = GetComponent<Slider>();
 sliderUI.minValue = 0;
 sliderUI.maxValue = 1;
 sliderUI.wholeNumbers = false;
 }

 private void SetupTimer (){
 countdownTimer = GetComponent<CountdownTimer>();
 countdownTimer.ResetTimer(startSeconds);
 }
}

11. Run your game and you will see the slider move with each second, revealing more
and more of the red background to indicate the time remaining.

How it works...
You hid the Handle Slide Area child so that Slider is for display only, and cannot be interacted
with by the user. The Background color of the Slider was set to red, so that, as the counter
goes down, more and more red is revealed—warning the user that the time is running out.
The Fill of the Slider was set to green, so that the proportion remaining is displayed in green
(the more green it becomes, the larger the value of the slider/timer).

An instance of the provided CountdownTimer script class was added as a component to the
Slider. The ResetTimer(…) method records the number of seconds provided and the time
the method was called. The GetProportionRemaining() method returns a value from
0.0-1.0, representing the proportion of the seconds remaining (1.0 being all seconds, 0.5 half
the seconds, and 0.0 meaning that no seconds are left).

You have added to the Slider GameObject an instance of the SliderTimerDisplay scripted
class. The Start() method calls the SetupSlider() and SetupTimer() methods.

The SetupSlider() method sets the sliderUI variable to be a reference to the Slider
component, and sets up this slider mapped to float (decimal) values between 0.0 and 1.0.

The SetupTimer() method sets the countdownTimer variable to be a reference for the
CountdownTimer component, and starts this timer scripted component to count down from
30 seconds.

In each frame, the Update()method sets the slider value to the float returned by calling the
GetProportionRemaining()method from the running timer.

Chapter 1

39

Try to work with floats between 0.0-1.0 whenever possible.
Integers could have been used, setting the Slider min to 0 and max to 30 (for
30 seconds). However, changing the total number of seconds would then also
require the Slider settings to be changed. In most cases working with a float
proportion between 0.0 and 1.0 is the more general-purpose and reusable
approach to adopt.

Displaying a radar to indicate the relative
locations of objects

A radar displays the locations of other objects relative to the player, usually based on a
circular display, where the center represents the player, and each graphical 'blip' indicates
how far away and what relative direction objects are to the player. Sophisticated radar displays
will display different categories of objects with different colored or shaped 'blip' icons.

In the screenshot, we can see 2 red square 'blips', indicating the relative position of the 2
red cube GameObjects tagged Cube near the player, and a yellow circle 'blip' indicating the
relative position of the yellow sphere GameObject tagged Sphere. The green circle radar
background image gives the impression of an aircraft control tower radar or something similar.

Getting ready
For this recipe, we have prepared the images that you need in a folder named Images in
1362_01_11.

Core UI – Messages, Menus, Scores, and Timers

40

How to do it...
To create a radar to show the relative positions of the objects, follow these steps:

1. Create a new 3D project by importing the following standard assets:

 � Environment
 � Characters
 � Cameras

2. Create a terrain by navigating to the Create | 3D Object | Terrain menu.

3. Size the terrain 20 x 20, positioned at (-10, 0, -10)—so that its center is at (0, 0, 0),
as shown in the following figure:

4. Texture paint your terrain with the SandAlbedo option, as shown here:

Chapter 1

41

5. From the Standard Assets folder in the Project panel, drag the prefab
ThirdPersonController into the scene and position it at (0, 1, 0).

6. Tag this ThirdPersonController GameObject called Player.

7. Remove the Main Camera GameObject.

8. From the Standard Assets folder in the Project panel, drag the prefab
Multi-PurposeCameraRig into the scene.

9. With Multi-PurposeCameraRig selected in the Hierarchy, drag the
ThirdPersonController GameObject into the Target property of the Auto Cam (Script)
public variable in the Inspector tab, as shown in the following screenshot:

10. Import the provided folder known as Images.

11. In the Hierarchy panel, add a UI | RawImage GameObject to the scene
named RawImage-radar.

12. Ensure that the RawImage-radar GameObject is selected in the Hierarchy panel.
From your Project Images folder, drag the radarBackground image into the
Raw Image (Script) public property Texture.

13. Now, in Rect Transform position RawImage-radar at the top-left part using the
Anchor Presets item. Then set the width and height to 200 pixels.

14. Create another new UI RawImage named RawImage-blip. Assign the
yellowCircleBlackBorder texture. Tag the Blip GameObject.

15. In the Project panel, create a new empty prefab named blip-sphere, and drag the
RawImage-blip GameObject into this prefab to store all its properties.

16. Now, change the texture of RawImage-blip to redSquareBlackBorder.

17. In the Project panel, create a new empty prefab named blip-cube, and drag the
RawImage-blip GameObject into this prefab to store all its properties.

18. Delete the RawImage-blip GameObject from the Hierarchy panel.

Core UI – Messages, Menus, Scores, and Timers

42

19. Create a C# script class called Radar, containing the following code, and add an
instance as a scripted component to the RawImage-radar GameObject:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class Radar : MonoBehaviour{
 public float insideRadarDistance = 20;
 public float blipSizePercentage = 5;

 public GameObject rawImageBlipCube;
 public GameObject rawImageBlipSphere;

 private RawImage rawImageRadarBackground;
 private Transform playerTransform;
 private float radarWidth;
 private float radarHeight;
 private float blipHeight;
 private float blipWidth;

 void Start (){
 playerTransform =
GameObject.FindGameObjectWithTag("Player").transform;
 rawImageRadarBackground = GetComponent<RawImage>();

 radarWidth =
rawImageRadarBackground.rectTransform.rect.width;
 radarHeight =
rawImageRadarBackground.rectTransform.rect.height;

 blipHeight = radarHeight * blipSizePercentage/100;
 blipWidth = radarWidth * blipSizePercentage/100;
 }

 void Update (){
 RemoveAllBlips();
 FindAndDisplayBlipsForTag("Cube", rawImageBlipCube);
 FindAndDisplayBlipsForTag("Sphere", rawImageBlipSphere);
 }

 private void FindAndDisplayBlipsForTag(string tag,
GameObject prefabBlip){
 Vector3 playerPos = playerTransform.position;

Chapter 1

43

 GameObject[] targets =
GameObject.FindGameObjectsWithTag(tag);

 foreach (GameObject target in targets) {
 Vector3 targetPos = target.transform.position;
 float distanceToTarget = Vector3.Distance(targetPos,
playerPos);
 if((distanceToTarget <= insideRadarDistance)){
 Vector3 normalisedTargetPosiiton =
NormalisedPosition(playerPos, targetPos);
 Vector2 blipPosition =
CalculateBlipPosition(normalisedTargetPosiiton);
 DrawBlip(blipPosition, prefabBlip);
 }
 }
 }

 private void RemoveAllBlips(){
 GameObject[] blips =
GameObject.FindGameObjectsWithTag("Blip");
 foreach (GameObject blip in blips)
 Destroy(blip);
 }

 private Vector3 NormalisedPosition(Vector3 playerPos,
Vector3 targetPos){
 float normalisedyTargetX = (targetPos.x -
playerPos.x)/insideRadarDistance;
 float normalisedyTargetZ = (targetPos.z -
playerPos.z)/insideRadarDistance;
 return new Vector3(normalisedyTargetX, 0,
normalisedyTargetZ);
 }

 private Vector2 CalculateBlipPosition(Vector3 targetPos){
 // find angle from player to target
 float angleToTarget = Mathf.Atan2(targetPos.x,
targetPos.z) * Mathf.Rad2Deg;

 // direction player facing
 float anglePlayer = playerTransform.eulerAngles.y;

 // subtract player angle, to get relative angle to
object
 // subtract 90

Core UI – Messages, Menus, Scores, and Timers

44

 // (so 0 degrees (same direction as player) is UP)
 float angleRadarDegrees = angleToTarget - anglePlayer
- 90;

 // calculate (x,y) position given angle and distance
 float normalisedDistanceToTarget = targetPos.magnitude;
 float angleRadians = angleRadarDegrees * Mathf.Deg2Rad;
 float blipX = normalisedDistanceToTarget *
Mathf.Cos(angleRadians);
 float blipY = normalisedDistanceToTarget *
Mathf.Sin(angleRadians);

 // scale blip position according to radar size
 blipX *= radarWidth/2;
 blipY *= radarHeight/2;

 // offset blip position relative to radar center
 blipX += radarWidth/2;
 blipY += radarHeight/2;

 return new Vector2(blipX, blipY);
 }

 private void DrawBlip(Vector2 pos, GameObject
blipPrefab){
 GameObject blipGO =
(GameObject)Instantiate(blipPrefab);
 blipGO.transform.SetParent(transform.parent);
 RectTransform rt =
blipGO.GetComponent<RectTransform>();
 rt.SetInsetAndSizeFromParentEdge(RectTransform.Edge.Left,
pos.x, blipWidth);
 rt.SetInsetAndSizeFromParentEdge(RectTransform.Edge.Top,
pos.y, blipHeight);
 }
}

20. Create two cubes—tagged Cube, textured with a red image called icon32_square_red.
Position each away from the player's character.

21. Create a sphere—tagged Sphere, textured with a red image called icon32_square_
yellow. Position this away from the cubes and the player's character.

22. Run your game. You will see two red squares and one yellow circle on the radar,
showing the relative positions of the red cubes and yellow sphere. If you move
too far away, then the blips will disappear.

Chapter 1

45

This radar script scans 360 degrees all around the player, and only considers
straight line distances in the X-Z plane. So, the distances in this radar are not
affected by any height difference between the player and target GameObjects.
The script can be adapted to ignore targets whose height is more than some
threshold different to the player's height. Also, as presented, this recipe radar
sees through everything, even if there are obstacles between the player and
the target. The recipe can be extended to not show obscured targets through
the user of the ray-casting techniques. See the Unity scripting reference
for more details about ray-casting at http://docs.unity3d.com/
ScriptReference/Physics.Raycast.html.

How it works...
A radar background is displayed on the screen. The center of this circular image represents
the position of the player's character. You have created two prefabs; one for red square
images to represent each red cube found within the radar distance, and one for yellow
circles to represent yellow sphere GameObjects.

The Radar C# script class has been added to the radar UI Image GameObject. This class
defines four public variables:

 f insideRadarDistance: This value defines the maximum distance that an object
may be from the player to still be included on the radar (objects further than this
distance will not be displayed on the radar).

 f blipSizePercentage: This public variable allows the developer to decide how
large each 'blip' will be, as a proportion of the radar's image.

 f rawImageBlipCube and rawImageBlipSphere: These are references to the
prefab UI RawImages that are to be used to visually indicate the relative distance
and position of cubes and spheres on the radar.

Since there is a lot happening in the code for this recipe, each method will be described in
its own section.

The Start() method
The Start() method caches a reference to the Transform component of the player's
character (tagged as Player). This allows the scripted object to know about the position
of the Player's character in each frame. Next, the width and height of the radar image are
cached—so, the relative positions for 'blips' can be calculated, based on the size of this
background radar image. Finally, the size of each blip (width and height) is calculated,
using the blipSizePercentage public variable.

http://docs.unity3d.com/ScriptReference/Physics.Raycast.html
http://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Core UI – Messages, Menus, Scores, and Timers

46

The Update() method
The Update() method calls the RemoveAllBlips() method, which removes any old
RawImage UI GameObjects of cubes and spheres that might currently be displayed.

Next, the FindAndDisplayBlipsForTag(…)method is called twice. First, for the
objects tagged Cube, to be represented on the radar with the rawImageBlipCube
prefab and then again for objects tagged Sphere, to be represented on the radar with the
rawImageBlipSphere prefab. As you might expect, most of the hard work for the radar
is to be performed by the FindAndDisplayBlipsForTag(…) method.

The FindAndDisplayBlipsForTag(…) method
This method inputs two parameters: the string tag for the objects to be searched for; and a
reference to the RawImage prefab to be displayed on the radar for any such tagged objects
within the range.

First, the current position of the player's character is retrieved from the cached player transform
variable. Next, an array is constructed, referring to all GameObjects in the scene that have
the provided tag. This array of GameObjects is looped through, and for each GameObject,
the following actions are performed:

 f The position of the target GameObject is retrieved

 f The distance from this target position to the player's position is calculated, and if this
distance is within the range (less than or equal to insideRadarDistance), then
three steps are now required to get the blip for this object to appear on the radar:

 � The normalized position of the target is calculated by calling
NormalisedPosition(…)

 � The position of the blip on the radar is then calculated from this normalized
position by calling CalculateBlipPosition(…)

 � Finally, the RawImage blip is displayed by calling DrawBlip(…) and passing
the blip position and the reference to the RawImage prefab that is to be
created there

The NormalisedPosition(…) method
The NormalisedPosition(…) method inputs the player's character position and the target
GameObject position. It has the goal of outputting the relative position of the target to the
player, returning a Vector3 object with a triplet of X, Y, and Z values. Note that since the radar
is only 2D, we ignore the Yvalue of target GameObjects. So, the Yvalue of the Vector3 object
returned by this method will always be 0. So, for example, if a target was at exactly the same
location as the player, the returned X, Y, Z Vector3 object would be (0, 0, 0).

Chapter 1

47

Since we know that the target GameObject is no further from the player's character than
insideRadarDistance, we can calculate a value in the -1 … 0 … +1 range for the X and
Z axis by finding the distance on each axis from the target to the player, and then dividing it
by insideRadarDistance. An X value of -1 means that the target is fully to the left of the
player (at a distance that is equal to insideRadarDistance), and +1 means it is fully to
the right. A value of 0 means that the target has the same X position as the player's character.
Likewise, for -1 … 0 … +1 values in the Z-axis (this axis represents how far, in front or behind
us an object, is located, which will be mapped to the vertical axis in our radar).

Finally, this method constructs and returns a new Vector3 object, with the calculated X and
Z normalized values, and a Y value of zero.

The normalized position
A normalized value is one that has been simplified in some way, so the
context has been abstracted away. In this recipe, what we are interested in is
where an object is relative to the player. So, our normal form is to get a value
of the X and Z position of a target in the -1 to +1 range for each axis. Since we
are only considering GameObject within out insideRadarDistance value,
we can map these normalized target positions directly onto the location of the
radar image in our UI.

The CalculateBlipPosition(…) method
First, we calculate angleToTarget: the angle from (0, 0, 0) to our normalized
target position.

Next, we calculate anglePlayer: the angle the player's character is facing. This recipe
makes use of the yaw angle of the rotation, which is the rotation about the Y-axis—that is,
the direction that a character controller is facing. This can be found in the Y component of
a GameObject's eulerAngles component of its transform. You can imagine looking from
above and down at the character controller, and see what direction they are facing—this is
just what we are trying to display graphically with the compass.

Our desired radar angle (the angleRadarDegrees variable) is calculated by subtracting the
player's direction angle from the angle between target and player, since a radar displays the
relative angle from the direction that the player is facing, to the target object. In mathematics,
an angle of zero indicates an east direction. To correct this, we need to also subtract
90 degrees from the angle.

Core UI – Messages, Menus, Scores, and Timers

48

The angle is then converted into radians, since this is required for the Unity trigonometry
methods. We then multiply the Sin() and Cos() results by our normalized distances to
calculate the X and Y values respectively (see the following figure):

(x,y)

x=sin()

y=cos()

�
�

P
la

ye
r

F
a
c
in

g

(0,0)

h

a

�

o

Our final position values need to be expressed as pixel lengths, relative to the center of the
radar. So, we multiply our blipX and blipY values by half the width and the height of the
radar; note that we multiply only with half the width, since these values are relative to the
center of the radar.

Note: In this figure, alpha is the angle between player and target object, 'a' is
the adjacent side, 'h' is the hypotenuse and 'o' is the side opposite the angle.

We then add half the width and height of the radar image to the blipX/Y values. So, these
values are now positioned relative to the center.

Finally a new Vector2 object is created and returned, passing back these final calculated X
and Y pixel values for the position of our blip icon.

The DrawBlip() method
The DrawBlip() method takes the input parameters of the position of the blip (as a
Vector2 X, Y pair), and the reference to the RawImage prefab to be created at that
location on the radar.

A new GameObject is created from the prefab, and is parented to the radar GameObject
(of which the scripted object is also a component). A reference is retrieved to the Rect
Transform of the new RawImage GameObject that has been created for the 'blip'. Calls to the
Unity RectTransform method, SetInsetAndSizeFromParentEdge(…), result in the blip
GameObject being positioned at the provided horizontal and vertical locations over the radar
image, regardless of where in the Game panel the background radar image has been located.

Chapter 1

49

Creating UIs with the Fungus open-source
dialog system

Rather than constructing your own UI and interactions from scratch each time, there are
plenty of UI and dialogue systems available for Unity. One powerful, free, and open source
dialog system is called Fungus, which uses a visual flowcharting approach to dialog design.

In this recipe, we'll create a very simple, two-sentence dialogue, to illustrate the basics of
Fungus. The following screenshot shows the Fungus-generated dialog for the first sentence
('Hello, how are you') and the interactive button (a triangle inside a circle) the user clicks to
progress to the next piece of dialog (in the bottom-right part of the rectangle).

How to do it...
To create a two-sentence dialog using Fungus, follow these steps:

1. Download the latest version of the Fungus unitypackage from the FungusGames
website http://www.fungusgames.com/.

2. Create a new Unity 2D project.

3. Import the Fungus unitypackage by navigating to Assets | Import Package
| Custom Package..., and then navigating to your downloaded file location.

4. Create a new Fungus Flowchart GameObject by choosing menu: Tools | Fungus |
Create | Flowchart.

5. Display and dock the Fungus Flowchart window panel by choosing menu: Tools |
Fungus | Flowchart Window.

http://fungusgames.com/

Core UI – Messages, Menus, Scores, and Timers

50

6. There will be a block in the Flowchart Window. Click on this block to select it
(a green border appears around the block to indicate that it is selected), and then
in the Inspector panel, change the name of this block to Start, as shown in the
following screenshot:

7. Each Block in a Flowchart follows a sequence of commands. So, we are now going
to create a sequence of commands to display two sentences to the user when the
game runs.

The sequence of Commands in a Block
Each Block in a Flowchart follows a sequence of Commands,
so to display two sentences to the user when the game runs, we
need to create a sequence of two Say commands in the Inspector
panel properties for our Block.

8. Ensure that the Start block is still selected in the Flowchart panel. Now, click on the
plus +' button at the bottom section of the Inspector panel to display the menu of
Commands, and select the Narrative | Say command, as shown here:

Chapter 1

51

9. Since we only have one command for this block, that command will automatically be
selected (highlighted green) in the top-half part of the Inspector view. The bottom half
of the Inspector view presents the properties for the currently selected Command, as
shown in the following screenshot. In the bottom-half part of the Inspector view, for
the Story Text property, enter the text of the question that you wish to be presented
to the user: How are you today?

10. Now, create another Say Command, and type the following for its Story Text property:
Very well thank you.

11. When you run the game, the user will first be presented with the How are you today?
text (hearing a clicking noise as each letter is typed on screen). After the user clicks
on the 'continue' triangle button (at the bottom-right part of the dialog window), they
will then be presented with the second sentence: Very well thank you.

How it works...
You have created a new Unity project, and imported the Fungus asset package, containing the
Fungus Unity menus, windows and commands, and also the example projects.

You have added a Fungus Flowchart to your scene with a single Block that you have named
Start. Your block starts to execute when the game begins (since the default for the first block
is to be executed upon receiving the Game Started event).

In the Start block, you added a sequence of two Say Commands. Each command presents a
sentence to the user, and then waits for the continue button to be clicked before proceeding
to the next Command.

Core UI – Messages, Menus, Scores, and Timers

52

As can be seen, the Fungus system handles the work of creating a nicely presented panel to
the user, displaying the desired text and continue button. Fungus offers many more features,
including menus, animations, control of sounds and music, and so on, details of which can be
found by exploring their provided example projects, and their websites:

 f http://fungusgames.com/

 f https://github.com/FungusGames/Fungus

Setting custom mouse cursor images
Cursor icons are often used to indicate the nature of the interaction that can be done with
the mouse. Zooming, for instance, might be illustrated by a magnifying glass. Shooting,
on the other hand, is usually represented by a stylized target. In this recipe, we will learn
how to implement custom mouse cursor icons to better illustrate your gameplay—or just to
escape the Windows, OSX, and Linux default GUI. The following screenshot shows a custom
magnifying glass mouse cursor when the use's mouse pointer hovers over a Button:

Getting ready
For this recipe, we have prepared the images that you'll need in a folder named
IconsCursors in the 1362_01_13 folder.

How to do it...
To make a custom cursor appear when the mouse is over a GameObject, follow these steps:

1. Create a new Unity 2D project.

2. Add a Directional Light item to the scene by navigating to Create | Light |
Directional light.

3. Add a 3D Cube to the scene, scaled to (5, 5, 5). Because it was created as a 2D
project the cube will appear as a grey square in the Game panel (2D projects have
an orthographic camera, so we won't see perspective effects).

http://fungusgames.com/
https://github.com/FungusGames/Fungus

Chapter 1

53

4. Import the provided folder called IconsCursors.

Ensure that each image in this folder has been imported as Texture
Type Cursor. If they are not, then select this type for each image
and click on the Apply button in the Inspector view.

5. Create a C# script class called CustomCursorPointer, containing the following
code, and add an instance as a scripted component to the Cube GameObject:
using UnityEngine;
using System.Collections;

public class CustomCursorPointer : MonoBehaviour {
 public Texture2D cursorTexture2D;

 private CursorMode cursorMode = CursorMode.Auto;
 private Vector2 hotSpot = Vector2.zero;

 public void OnMouseEnter() {
 SetCustomCursor(cursorTexture2D);
 }

 public void OnMouseExit() {
 SetCustomCursor(null);
 }

 private void SetCustomCursor(Texture2D curText){
 Cursor.SetCursor(curText, hotSpot, cursorMode);
 }
}

Event methods OnMouseEnter() and OnMouseExit()
have been purposely declared as public. This will allow these
methods to also be called from UI GameObjects when they
receive the OnPointerEnterExit events.

6. With the Cube item selected in the Hierarchy panel, drag the CursorTarget
image into the public Cursor Texture 2D variable slot in the Inspector panel for
the Customer Cursor Pointer (Script) component.

Core UI – Messages, Menus, Scores, and Timers

54

7. Save the current scene, and add it to the Build.

You will not be able to see the custom cursors in the Unity Editor. You
must build your game application, and you'll see the custom cursors
when you run the build app.

8. Build your project. Now, run your built application, and when the mouse pointer
moves over the grey square of the Cube, it will change to the custom CursorTarget
image that you chose.

How it works...
You have added a scripted object to a cube that will tell Unity to change the mouse pointer
when an OnMouseEnter message is received—that is, when the user's mouse pointer moves
over the part of the screen where the cube is being rendered. When an OnMouseExit event is
received (the users mouse pointer is no longer over the cube part of the screen), the system is
told to go back to the operating system default cursor. This event should be received within a
few milliseconds of the user's mouse exiting from the collider.

There's more...
There are some details that you don't want to miss.

Custom cursors for mouse over UI controls
Unity 5 UI controls do not receive the OnMouseEnter and OnMouseExit events. They
can respond to the PointerEnter/Exit events, but this requires adding the Event Trigger
components. To change the mouse pointer when the mouse moves over a UI element,
do the following:

1. Add a UI Button to the scene.

2. Add an instance of the C# script class called CustomCursorPointer to the button.

3. With Button selected in the Hierarchy panel, drag the CursorZoom image into
the public Cursor Texture 2D variable slot in the Inspector panel for the Customer
Cursor Pointer (Script) component.

4. In the Inspector view, add an Event Triggers component to the Button. Choose
menu: Add Component | Event | Event Trigger.

5. Add a Pointer Enter event to your Event Trigger component, click on the plus (+)
button to add an event handler slot, and drag the Button GameObject into the
Object slot.

Chapter 1

55

6. From the Function drop-down menu, choose CustomCursorPointer and then choose
the OnMouseEnter method.

We have added an Event Handler so that when the Button receives a
Pointer Enter (mouse over) event, it will execute the OnMouseEnter()
method of the CustomCursorPointer scripted object inside the Button.

7. Add a Pointer Exit event to your Event Trigger component, and make it call the
OnMouseExit()method from CustomCursorPointer when this event is received.

8. Save the current scene.

9. Build your project. Now, run your built application and when the mouse pointer moves
over the Button, it will change to the custom CursorZoom image that you chose.

Input Fields component for text entry
While many times we just wish to display non-interactive text messages to the user, there are
times (such as name entry for high scores) where we wish that the user was able to enter text
or numbers into our game. Unity provides the Input Field UI component for this purpose. In
this recipe, we'll create a simple text input UI by making use of the default Button image and
text GameObjects, and we'll add a script to respond to each new value of the input field.

You can, of course, create a working text input quicker than this recipe's
method by choosing menu: Create | UI | Input Field, which creates a
GameObject containing an Input Field component, child text, and placeholder
GameObjects, as shown in the following screenshot. However, by following the
steps in this recipe, you'll learn the interrelationships between the different
interface elements, because you'll be creating these connections manually
from the deconstructed parts of the UI Button GameObject.

Core UI – Messages, Menus, Scores, and Timers

56

How to do it...
To create a promoted text input box to the user with faint placeholder text, follow these steps:

1. Create a new Unity 2D project.

2. In the Inspector view, change the background of the Main Camera to solid white.

3. Add a UI Button to the scene. Delete the Button (Script) component of the Button
GameObject (since it won't be a button, it will be an interactive text input by the time
we are finished with it!).

4. Rename the Text child GameObject of the Button component to Text-placeholder.
Uncheck the Rich Text option, change the text to Enter name…, change the
Alignment in Left and Top, and in the Rect Transform, set Left to 4 and Top to 7.

5. Duplicate Text-placeholder by naming the copy Text-prompt. Change the Text of this
GameObject to Name:, and set its Left position to -50.

6. Duplicate Text-placeholder again, naming this new copy Text-input. Delete all of the
content of the Text property of this new GameObject.

Chapter 1

57

7. Select Text-placeholder in the Hierarchy, and we will now make the placeholder text
mostly transparent. Set the A (alpha) Color value of the Text (Script) component of
this GameObject to a value that is about a quarter of its maximum value (e.g. 64).

8. Select Text-input in the Hierarchy, and add an Input Field component by choosing
menu: Add Component | UI | Input Field.

9. Drag the Text-input GameObject into the Text Component property of Input Field,
and drag the Text-placeholder GameObject into the Placeholder property.

10. Save and run your scene. You now have a working text input UI for your user. When
there is no text content, the faint placeholder text will be displayed. As soon as any
characters have been typed, the placeholder will be hidden and the characters typed
will appear in black text. Then, if all the characters are deleted, the placeholder will
appear again.

How it works...
The core of interactive text input in Unity is the responsibility of the Input Field component.
This needs a reference to a UI Text GameObject. To make it easier to see where the text
can be typed, we have made use of the default rounded rectangle image that Unity provides
when a Button GameObject is created. Buttons have both an Image component and a Text
child GameObject. So, two items that we need can be acquired very easily by creating a new
Button, and simply by removing the Button (Script) component.

There are usually three Text GameObjects involved with the user text input: the static prompt
text (in our recipe, for example, the Name: text); then the faint placeholder text, reminding
users where and what they should type; and finally the text object (with the font and color
settings and so on) that is actually displayed to the user, showing the characters as they type.

At runtime, a Text-Input Input Caret GameObject is created—displaying the blinking vertical
line to inform the user where their next letter will be typed. Note that the Content Type of
the Input Field (Script), in the Inspector, can be set to several specific types of text input,
including e-mail addresses, integer or decimal numbers only, or the password text (where an
asterisk is displayed for each entered character).

There's more...
There are some details that you don't want to miss.

Executing a C# method to respond each time the user changes
the input text content
Having interactive text on the screen isn't of much use unless we can retrieve the text entered
to use in our game logic, and we may need to know each time the user changes the text
content and act accordingly.

Core UI – Messages, Menus, Scores, and Timers

58

To add code and events to respond each time the text content has been changed by the user,
do the following:

1. Add an instance of the C# script class called DisplayChangedTextContent to the
Text-input GameObject:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class DisplayChangedTextContent : MonoBehaviour {
 private InputField inputField;

 void Start(){
 inputField = GetComponent<InputField>();
 }

 public void PrintNewValue (){
 string msg = "new content = '" + inputField.text + "'";
 print (msg);
}
}

2. Add an End Edit (String) event to the list of event handlers for the Input Field (Script)
component. Click on the plus (+) button to add an event handler slot, and drag the
Text-input GameObject into the Object slot.

3. From the Function drop-down menu, choose DisplayChangedTextContent and then
choose the PrintNewValue method.

4. Save and run the scene. Each time the user types in new text and then presses Tab or
Enter, the End Edit event will fire, and you'll see a new content text message printed
in the Console window by our script, as shown in the following screenshot:

Chapter 1

59

Toggles and radio buttons via Toggle Groups
Users make choices, and often, these choices are either to have one of two available options
(for example, sound on or off), or sometimes to choose one of several possibilities (for
example, difficulty level easy/medium/hard). Unity UI Toggles allows users to turn options on
and off; and when combined with Toggle Groups, they restrict choices to one of the group of
items. In this recipe, we'll first explore the basic Toggle, and a script to respond to a change in
values. Then in the There's More section, we'll extend the example to illustrate Toggle Groups,
and styling these with round images to make them look more like traditional radio buttons.

The following screenshot shows how the button's status changes are logged in the Console
panel when the scene is running:

Getting ready
For this recipe, we have prepared the images that you'll need in a folder named UI Demo
Textures in the 1362_01_15 folder.

How to do it...
To display an on/off UI Toggle to the user, follow these steps:

1. Create a new Unity 2D project.

2. In the Inspector panel, change the Background color of the Main Camera to white.

3. Add UI Toggle to the scene.

4. Enter First Class as Text for the Label child GameObject of the Toggle
GameObject.

5. Add an instance of the C# script class called ToggleChangeManager to the
Toggle GameObject:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

Core UI – Messages, Menus, Scores, and Timers

60

public class ToggleChangeManager : MonoBehaviour {
 private Toggle toggle;

 void Start () {
 toggle = GetComponent<Toggle>();
 }

 public void PrintNewToggleValue(){
 bool status = toggle.isOn;
 print ("toggle status = " + status);
 }
}

6. With the Toggle GameObject selected, add an On Value Changed event to the list of
event handlers for the Toggle (Script) component, click on the plus (+) button to add
an event handler slot, and drag Toggle into the Object slot.

7. From the Function drop-down menu, choose ToggleChangeManager and then
choose the PrintNewToggleValue method.

8. Save and run the scene. Each time you check or uncheck the Toggle GameObject,
the On Value Changed event will fire, and you'll see a new text message printed
into the Console window by our script, stating the new Boolean true/false value
of the Toggle.

How it works...
When you create a Unity UI Toggle GameObject, it comes with several child GameObjects
automatically—Background, Checkmark, and the text Label. Unless we need to style the look
of a Toggle in a special way, all that is needed is simply to edit the text Label so that the user
knows what option or feature that this Toggle is going to turn on/off.

The C# scripted class called ToggleChangeManager's method called Start() gets a
reference to the Toggle component in the GameObject, where the script instance is located.
When the game is running, each time the user clicks on the Toggle to change its value, an On
Value Changed event is fired. We then register the PrintNewToggleValue()method, which
is supposed to be executed when such an event occurs. This method retrieves, and then
prints out to the Console panel the new Boolean true/false value of the Toggle.

There's more...
There are some details that you don't want to miss.

Chapter 1

61

Adding more Toggles and a Toggle Group to implement
mutually-exclusive radio buttons
The Unity UI Toggles are also the base components, if we wish to implement a group of
mutually-exclusive options in the style of radio buttons. To create such a group of related
choices, do the following:

1. Import the UI Demo Textures folder into the project.

2. Remove the C# script class ToggleChangeManager component from the Toggle
GameObject.

3. Rename the Toggle GameObject as Toggle-easy.

4. Change the Label text to Easy, and tag this GameObject with a new tag called Easy.

5. Select the Background child GameObject of Toggle-easy, and in the Image
(Script) component, drag the UIToggleBG image into the Source Image property.

6. Ensure that the Is On property of the Toggle (Script) component is checked, and
then select the Checkmark child GameObject of Toggle-easy. In the Image (Script)
component, drag the UIToggleButton image into the Source Image property.

Of the three choices (easy, medium, and hard) that we'll offer to
the user, we'll set the easy option to be the one that is supposed
to be initially selected. Therefore, we need its Is On property to be
checked, which will lead to its 'checkmark' image being displayed.
To make these Toggles look more like radio buttons, the
background of each is set to the circle image of UIToggleBG, and
the checkmark (which displays the Toggles that are on) is filled
with the circle image called UIToggleButton.

7. Duplicate the Toggle-easy GameObject, naming the copy Toggle-medium. Set its
Rect Transform property Pos Y to -25 (so, this copy is positioned below the easy
option), and uncheck the Is On property of the Toggle (Script) component. Tag this
copy with a new tag called Medium.

8. Duplicate the Toggle-medium GameObject, naming the copy Toggle-hard. Set its
Rect Transform property Pos Y to -50 (so this copy is positioned below the medium
option). Tag this copy with a new tag called Hard.

9. Add an instance of the C# script class called RadioButtonManager to the
Canvas GameObject:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class RadioButtonManager : MonoBehaviour {
 private string currentDifficulty = "Easy";

Core UI – Messages, Menus, Scores, and Timers

62

 public void PrintNewGroupValue(Toggle sender){
 // only take notice from Toggle just swtiched to On
 if(sender.isOn){
 currentDifficulty = sender.tag;
 print ("option changed to = " + currentDifficulty);
 }
 }
}

10. With the Toggle-easy GameObject selected, add an On Value Changed event to the
list of event handlers for the Toggle (Script) component. Click on the plus (+) button
to add an event handler slot, and drag the Canvas GameObject into the Object slot.

11. From the Function drop-down menu, choose RadioButtonManager, and then choose
the PrintNewGroupValue method. In the Toggle parameter slot, which is initially
None (Toggle), drag the Toggle-easy GameObject.

12. Do the same for the Toggle-medium and Toggle-hard GameObjects—so each Toggle
object calls the PrintNewGroupValue(…)method of a C# scripted component called
RadioButtonManager in the Canvas GameObject, passing itself as a parameter.

13. Save and run the scene. Each time you check one of the three radio buttons, the
On Value Changed event will fire, and you'll see a new text message printed into the
Console window by our script, stating the tag of whichever Toggle (radio button) was
just set to true (Is On).

14. The following screenshot shows how the value corresponding to the selected radio
button is logged to the Console panel when the scene is running:

Conclusion
In this chapter, we have introduced recipes demonstrating a range of Unity 5 UI components,
and illustrated how the same components can be used in different ways (such as an interactive
slider being used to display the status of a countdown timer). One set of UI components in
many games are those that communicate to the user what they are carrying (or yet to pick up).
We have dedicated another chapter in this book to inventories in Chapter 2, Inventory GUIs,
which provides many inventory recipes and additional UI controls, such as adding interactive
scroll bars.

Chapter 1

63

Here are some suggestions for further reading, tutorials, and resources to help you continue
your learning of UI development in Unity:

 f Learn more about the Unity UI on manual pages at http://docs.unity3d.com/
Manual/UISystem.html.

 f Work through the Unity UI tutorial videos at https://unity3d.com/learn/
tutorials/topics/user-interface-ui.

 f Ray Wenderlich's great tutorial on Unity UI development at http://www.
raywenderlich.com/78675/unity-new-gui-part-1.

 f Unity's documentation pages about designing UI for multiple resolutions:
http://docs.unity3d.com/Manual/HOWTO-UIMultiResolution.html.

Games need fonts in a style to match the gameplay and theme. Here are some of the sources
of free personal/commercial fonts suitable for many games:

 f All the fonts at FontSquirrel are 100% free for commercial use. They are available at
http://www.fontsquirrel.com/.

 f See each font for individual license at the DaFont website. Many people ask for a
donation if these are used for commercial purposes. For more information, check
out http://www.dafont.com/xolonium.font.

 f See each font for individual licenses available on the Naldz Graphics blog at
http://naldzgraphics.net/textures/.

 f 1001 Free Fonts (for personal use) are available at http://www.1001freefonts.
com/index.php.

http://docs.unity3d.com/Manual/UISystem.html
http://docs.unity3d.com/Manual/UISystem.html
https://unity3d.com/learn/tutorials/topics/user-interface-ui
https://unity3d.com/learn/tutorials/topics/user-interface-ui
http://www.raywenderlich.com/78675/unity-new-gui-part-1
http://www.raywenderlich.com/78675/unity-new-gui-part-1
http://docs.unity3d.com/Manual/HOWTO-UIMultiResolution.html
http://www.fontsquirrel.com/
http://www.dafont.com/xolonium.font
http://naldzgraphics.net/textures/
http://www.1001freefonts.com/index.php
http://www.1001freefonts.com/index.php

Chapter 2

65

2
Inventory GUIs

In this chapter, we will cover the following topics:

 f Creating a simple 2D mini-game – SpaceGirl

 f Displaying single object pickups with carrying and not-carrying text

 f Displaying single object pickups with carrying and not-carrying icons

 f Displaying multiple pickups of the same object with text totals

 f Displaying multiple pickups of the same object with multiple status icons

 f Revealing icons for multiple object pickups by changing the size of a tiled image

 f Displaying multiple pickups of different objects as a list of text via a dynamic List<>
of PickUp objects

 f Displaying multiple pickups of different objects as text totals via a dynamic
Dictionary<> of PickUp objects and "enum" pickup types

 f Generalizing multiple icon displays using UI Grid Layout Groups (with scrollbars!)

Introduction
Many games involve the player collecting items or choosing from a selection of items.
Examples could be collecting keys to open doors, collecting ammo for weapons, choosing
from a collection of spells to cast, and so on.

The recipes in this chapter offer a range of solutions for displaying to the player whether
they are carrying an item or not, if they are allowed more than one of an item, and how
many they have.

Inventory GUIs

66

The big picture
The two parts of software design for implementing inventories relate to, first, how we choose
to represent the data about inventory items (that is, the data types and structures to store the
data) and, secondly, how we choose to display information about inventory items to the player
(the UI: User Interface).

Also, whilst not strictly inventory items, player properties such as lives left, health, or time
remaining can also be designed around the same concepts that we present in this chapter.

We need to first think about the nature of different inventory items for any particular game:

 f Single items:

 � Example(s): the only key for a level, our suit of magic armor

 � Data type: bool (true/false)

 � UI: nothing (if not carried) or text/image to show being carried

 � Or perhaps text saying "no key"/"key", or two images, one showing
an empty key outline and the second showing a full color key

 � If we wish to highlight to the player that there is an option to be
carrying this item

 f Continuous item:

 � Example(s): time left, health, shield strength

 � Data type: float (for example, 0.00–1.00) or integer scale
(for example, 0% .. 100%)

 � UI: text number or image progress bar/pie chart

 f Two or more of same item

 � Example(s): lives left, or number of arrows or bullets left

 � Data type: int (whole numbers)

 � UI: text count or images

 f Collection of related items

 � Example(s): keys of different colors to open correspondingly colored doors,
potions of different strength with different titles

 � Data structure: a struct or class for the general item type (for example, class
Key (color/cost/doorOpenTagString), stored as an array or List<>

 � UI: text list or list/grid arrangement of icons

Chapter 2

67

 f Collection of different items

 � Example(s): keys, potions, weapons, tools—all in the same inventory system

 � Data structure: List<> or Dictionary<> or array of objects, which can be
instances of different class for each item type

Each of the above representations and UI display methods are illustrated by the recipes in
this chapter.

Creating a simple 2D mini-game – SpaceGirl
This recipe presents the steps to create the 2DSpaceGirl mini-game, on which all the recipes
of this chapter are based.

Getting ready
For this recipe, we have prepared the images you need in a folder named Sprites in the
1362_02_01 folder. We have also provided the completed game as a Unity package in this
folder named Simple2DGame_SpaceGirl.

How to do it...
To create the simple 2D mini-game Space Girl follow these steps:

1. Create a new, empty 2D project.

2. Import supplied folder Sprites into your project.

Inventory GUIs

68

3. Convert each sprite image to be of type Sprite (2D and UI). To do this, select the
sprite in the Project panel, then, in the Inspector, change choose Sprite (2D and UI)
from the drop-down menu Texture Type, and click on the Apply button, as shown in
the following screenshot:

4. Set the Unity Player screen size to 800 x 600: choose the Edit | Project Settings
| Player menu, then for option Resolution and Presentation uncheck Default
is Full Screen, and set the width to 800 and height to 600, as shown in the
following screenshot:

Chapter 2

69

5. Select the Game panel; if not already chosen, then choose Standalone (800 x 600)
from the drop-down menu, as shown in the following screenshot:

6. Display the Tags & Layers properties for the current Unity project. Choose menu
Edit | Project Settings | Tags and Layers. Alternatively, if you are already editing a
GameObject, then you can select the Add Layer… menu from the Layer drop-down
menu at the top of the Inspector panel, as shown in the following screenshot:

7. The Inspector should now being displaying the Tags & Layers properties for the
current Unity project. Use the expand/contract triangle tools to contract Tags and
Layers, and to expand Sorting Layers.

Inventory GUIs

70

8. Use the plus sign + button to add two new sorting layers, as shown in the following
screenshot: first, add one named Background, and next, add one named
Foreground. The sequence is important, since Unity will draw items in layers
further down this list on top of items earlier in the list.

9. Drag the sprite background-blue from the Project panel (folder Sprites) into
either the Game or Hierarchy panel to create a GameObject for the current scene.

10. Set the Sorting Layer of GameObject background-blue to Background (in the
Sprite Renderer component).

11. Drag sprite star from the Project panel (folder Sprites) into either the Game or
Hierarchy panel to create a GameObject for the current scene.

12. In the Inspector panel, add a new tag Star by selecting the Add Tag… option from
the Tag drop-down menu at the top of the Inspector panel, as shown in the following
screenshot:

13. Apply the Star tag to GameObject star in the Hierarchy scene.

14. Set the Sorting Layer of GameObject star to Foreground (in the Sprite Renderer
component).

15. Add to GameObject star a Box Collider 2D (Add Component | Physics 2D | Box
Collider 2D) and check its Is Trigger, as shown in the following screenshot:

Chapter 2

71

16. Drag sprite girl1 from the Project panel (folder Sprites) into either the Game
or Hierarchy panel to create a GameObject for the player's character in the current
scene. Rename this GameObject player-SpaceGirl.

17. Set the Sorting Layer of GameObject player-SpaceGirl to Foreground (in the
Sprite Renderer component).

18. Add to GameObject player-SpaceGirl a Box Collider 2D (Add Component |
Physics 2D | Box Collider 2D).

19. Add to GameObject player-SpaceGirl a RigidBody 2D (Add Component | Physics
2D | Rigid Body 2D). Set its Gravity Scale to zero (so it isn't falling down the screen
due to simulated gravity), as shown in the following screenshot:

Inventory GUIs

72

20. Create a new folder for your scripts named Scripts.

21. Create the following C# Script PlayerMove (in folder Scripts) and add an instance
as a component to GameObject player-SpaceGirl in the Hierarchy:
using UnityEngine;
using System.Collections;

public class PlayerMove : MonoBehaviour {
 public float speed = 10;
 private Rigidbody2D rigidBody2D;

 void Awake(){
 rigidBody2D = GetComponent<Rigidbody2D>();
 }

 void FixedUpdate(){
 float xMove = Input.GetAxis("Horizontal");
 float yMove = Input.GetAxis("Vertical");

 float xSpeed = xMove * speed;
 float ySpeed = yMove * speed;

 Vector2 newVelocity = new Vector2(xSpeed, ySpeed);

 rigidBody2D.velocity = newVelocity;
 }
}

22. Save the scene (name it Main Scene and save it into a new folder named Scenes).

How it works...
You have created a player character in the scene, with its movement scripted component
PlayerMove. You have also created a star GameObject (a pickup), tagged Star and with a
2D box collider that will trigger a collision when the player's character hits it. When you run
the game, the player-SpaceGirl character should move around using the W A S D, arrow
keys, or joystick. Currently, nothing will happen if the player-SpaceGirl character hits a
star since that has yet to be scripted.

You have added a background (GameObject background-blue) to the scene, which will
be behind everything since it is in the rearmost sorting layer Background. Items you want
to appear in front of this background (the player's character and the star so far) are placed
on sorting layer Foreground. Learn more about Unity tags and layers at http://docs.
unity3d.com/Manual/class-TagManager.html.

http://docs.unity3d.com/Manual/class-TagManager.html
http://docs.unity3d.com/Manual/class-TagManager.html

Chapter 2

73

Displaying single object pickups with
carrying and not-carrying text

Often the simplest inventory situation is to display text to tell players if they are carrying a
single item (or not).

Getting ready
This recipe assumes that you are starting with the project Simple2Dgame_SpaceGirl setup
from the first recipe in this chapter. So, either make a copy of that project or do the following:

1. Create a new, empty 2D project.

2. Import the Simple2Dgame_SpaceGirl package.

3. Open scene Scene1 (in the Scenes folder).

4. Set the Unity Player screen size to 800 x 600 (see the previous recipe for how to do
this) and select this resolution in the Game panel the drop-down menu.

5. Convert each sprite image to be of type Sprite (2D and UI). In the Inspector, choose
Sprite (2D and UI) from drop-down menu Texture Type, and click on the Apply button.

For this recipe, we have prepared the font you need in a folder named Fonts in the
1362_02_02 folder.

How to do it...
To display text to inform the user about the status of carrying a single object pickup, follow
these steps:

1. Start with a new copy of mini-game Simple2Dgame_SpaceGirl.

2. Add a UI Text object (Create | UI | Text). Rename it Text-carrying-star. Change
its text to Carrying star: false.

3. Import the provided Fonts folder into your project.

Inventory GUIs

74

4. In the Inspector panel, set the font of Text-carrying-star to Xolonium-Bold
(folder Fonts), and set its color to yellow. Center the text horizontally and vertically,
and set its Height to 50, and set the Font Size to 32, as shown in the following
screenshot:

5. In its Rect Transform component, set its Height to 50, as shown in the next
screenshot:

6. Edit its Rect Transform, and while holding down SHIFT and ALT (to set pivot and
position), choose the top-stretch box, as shown in the following screenshot:

Chapter 2

75

7. Your text should now be positioned at the middle top of the Game panel, and its width
should stretch to match that of the whole panel, as shown in the next screenshot:

Inventory GUIs

76

8. Add the following C# Script Player to GameObject player-SpaceGirl in
the Hierarchy:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class Player : MonoBehaviour {
 public Text starText;
 private bool carryingStar = false;

 void Start(){
 UpdateStarText();
 }

 void OnTriggerEnter2D(Collider2D hit){
 if(hit.CompareTag("Star")){
 carryingStar = true;
 UpdateStarText();
 Destroy(hit.gameObject);
 }
 }

 private void UpdateStarText(){
 string starMessage = "no star :-(";
 if(carryingStar) starMessage = "Carrying star :-)";
 starText.text = starMessage;
 }
}

9. From the Hierarchy view, select the GameObject player-SpaceGirl. Then, from the
Inspector, access the Player (Script) component and populate the Star Text public
field with UI Text object Text-carrying-star, as shown in the following screenshot:

Chapter 2

77

10. When you play the scene, after moving the character into the star, the star should
disappear, and the onscreen UI Text message should change to Carrying star :-) ,
as shown in the following screenshot:

How it works...
The Text variable starText is a reference to the UI Text object Text-carrying-star.
The bool variable carryingStar represents whether or not the player is carrying the star
at any point in time; it is initialized to false.

The UpdateStarText() method copies the contents of the starMessage string to the
text property of starText. The default value of this string tells the user that the player is not
carrying the star, but an if statement tests the value of carryingKey, and, if that is true,
then the message is changed to inform the player that they are carrying the star.

Each time the player's character collides with any object that has its Is Trigger set to true, an
OnTriggerEnter2D() event message is sent to both objects involved in the collision. The
OnTriggerEnter2D() message is passed a parameter that is the Collider2D component
inside the object just collided with.

Our player's OnTriggerEnter2D() method tests the tag string of the object collided with
to see if it has the value Star. Since the GameObject star we created has its trigger set, and
has the tag Star, the if statement inside this method will detect a collision with star and
complete three actions: it sets the Boolean variable carryingStar to true, it calls the
method UpdateStarText(), and it destroys the GameObject it has just collided with
(in this case, star).

Inventory GUIs

78

NOTE: Boolean variables are often referred to as flags.
The use of a bool (true/false) variable to represent whether
some feature of the game state is true or false is very common.
Programmers often refer to these variables as flags. So, programmers
might refer to the carryingStar variable as the star-carrying flag.

When the scene begins, via the Start()method, we call the UpdateStarText()method;
this ensures that we are not relying on text typed into the UI Text object Text-carrying-
star at design time, but that the UI seen by the user is always set by our run-time methods.
This avoids problems where the words to be displayed to the user are changed in code and
not in the Inspector panel—which leads to a mismatch between the onscreen text when the
scene first runs and after it has been updated from a script.

A golden rule in Unity game design is to avoid duplicating content in
more than one place, and, therefore, we avoid having to maintain two
or more copies of the same content. Each duplicate is an opportunity
for maintenance issues when some, but not all, copies of a value are
changed.
Maximizing use of prefabs is another example of this principle in
action. This is also know as the DRY principal - Do Not Repeat Yourself.

There's more...
Some details you don't want to miss:

The separation of view logic
A game design pattern (best practice approach) called the Model-View-Controller pattern
(MVC) is to separate the code that updates the UI from the code that changes player and
game variables such as score and inventory item lists. Although this recipe has only one
variable and one method to update the UI, well structured game architectures scale up to
cope with more complex games, so it is often worth the effort of a little more code and an
extra script class, even at this game-beginning stage, if we want our final game architecture
to be well structured and maintainable.

To implement the separation of view pattern for this recipe, we need to do the following:

1. Add the following C# Script PlayerInventoryDisplay to GameObject
player-SpaceGirl in the Hierarchy:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

Chapter 2

79

public class PlayerInventoryDisplay : MonoBehaviour
{
 public Text starText;

 public void OnChangeCarryingStar(bool carryingStar){
 string starMessage = "no star :-(";
 if(carryingStar) starMessage = "Carrying star :-)";
 starText.text = starMessage;
 }
}

2. From the Hierarchy view, select the GameObject player-SpaceGirl. Then, from
the Inspector, access the PlayerInventoryDisplay (Script) component and
populate the Score Text public field with the UI Text object Text-carrying-star.

3. Remove the existing C# Script component Player and replace it with this C# Script
PlayerInventory containing the following (simplified) code:
using UnityEngine;
using System.Collections;

public class PlayerInventory : MonoBehaviour {
 private PlayerInventoryDisplay playerInventoryDisplay;
 private bool carryingStar = false;

 void Start(){
 playerInventoryDisplay = GetComponent<PlayerInventoryDispl
ay>();
 playerInventoryDisplay.OnChangeCarryingStar(carryingStar);
 }

 void OnTriggerEnter2D(Collider2D hit){
 if(hit.CompareTag("Star")){
 carryingStar = true;
 playerInventoryDisplay.OnChangeCarryingStar(carryingStar);
 Destroy(hit.gameObject);
 }
 }
}

As can be seen, the PlayerInventory script class no longer has to maintain a link to
the UI Text or worry about changing the text property of that UI component—all that work
is now the responsibility of the PlayerInventoryDisplay script. When the Player
instance component detects a collision with the star, after changing the carryingStar
bool flag's value to true, it just calls the OnChangeCarryingStar()method of the
PlayerInventoryDisplay component.

Inventory GUIs

80

The result is that the code for the script class PlayerInventory concentrates on the player
collision and status variables, while the code for the script class PlayerInventoryDisplay
handles the communication to the user. Another advantage of this design pattern is that the
method in which the information is communicated to the user via the UI can be changed
(for example, from text to an icon), without any change to the code in script class Player.

Note: There is no difference in the experience of the player, and all the
changes are to improve the architectural structure of our game code.

Displaying single object pickups with
carrying and not-carrying icons

Graphic icons are an effective way to inform the player that they are carrying an item. In this
recipe, if no star is being carried, a grey-filled icon in a blocked-off circle is displayed; then,
after the star has been picked up, a yellow-filled icon is displayed, as shown in the following
screenshot.

In many cases, icons are clearer (they don't require reading and thinking about) and can also
be smaller onscreen than text messages for indicating player status and inventory items.

Getting ready
This recipe assumes that you are starting with the project Simple2Dgame_SpaceGirl setup
from the first recipe in this chapter.

How to do it...
To toggle carrying and not-carrying icons for a single object pickup, follow these steps:

1. Start with a new copy of the mini-game Simple2Dgame_SpaceGirl.

2. In the Hierarchy panel, add a new UI Image object (Create | UI | Image). Rename it
Image-star-icon.

Chapter 2

81

3. Select Image-star-icon in the Hierarchy panel.

4. From the Project panel, drag the sprite icon_nostar_100 (folder Sprites) into the
Source Image field in the Inspector (in the Image (Script) component).

5. Click on the Set Native Size button for the Image component. This will resize the
UI Image to fit the physical pixel width and height of sprite file icon_nostar_100,
as shown in the following screenshot:

6. Now, we will position our icon at the top and left of the Game panel. Edit the UI
Image's Rect Transform component, and while holding down SHIFT and ALT (to set
pivot and position), choose the top-left box. The UI Image should now be positioned
at the top left of the Game panel, as shown in the following screenshot:

Inventory GUIs

82

7. Add the following C# Script Player to GameObject player-SpaceGirl in the
Hierarchy:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class Player : MonoBehaviour {
 public Image starImage;
 public Sprite iconStar;
 public Sprite iconNoStar;
 private bool carryingStar = false;

 void OnTriggerEnter2D(Collider2D hit){
 if(hit.CompareTag("Star")){
 carryingStar = true;
 UpdateStarImage();
 Destroy(hit.gameObject);
 }
 }

 private void UpdateStarImage(){
 if(carryingStar)
 starImage.sprite = iconStar;
 else
 starImage.sprite = iconNoStar;
 }
}

8. From the Hierarchy view, select the GameObject player-SpaceGirl. Then, from
the Inspector, access the Player (Script) component and populate the Star Image
public field with UI Image object Image-star-icon.

9. Now, populate the Icon Star public field from the Project panel with sprite icon_
star_100 and populate the Icon No Star public field from the Project panel with
sprite icon_nostar_100, as shown in the following screenshot:

Chapter 2

83

10. Now when you play the scene, you should see the no star icon (a grey-filled icon in
a blocked-off circle) at the top left until you pick up the star, at which point it will
change to show the carrying star icon (yellow-filled star).

How it works...
The Image variable starImage is a reference to the UI Image object Image-star-icon.
Sprite variables iconStar and iconNoStar are references to the Sprite files in the
Project panel—the sprites to tell the player whether or not a star is being carried. The bool
variable carryingStar represents internally as program data whether or not the player is
carrying the star at any point in time; it is initialized to false.

Much of the logic for this recipe is the same as the previous one. Each time the
UpdateStarImage()method is called, it sets the UI Image to the sprite that corresponds to
the value of bool variable carryingsStar.

Inventory GUIs

84

Displaying multiple pickups of the same
object with text totals

When several items of the same type have been picked up, often the simplest way to convey
what is being carried to the user is to display a text message showing the numeric total of
each item type being carried, as shown in the following screenshot. In this recipe, the total
number of stars collected is displayed using a UI Text object.

Getting ready
This recipe assumes you are starting with project Simple2Dgame_SpaceGirl setup from
the first recipe in this chapter. The font you need can be found in folder 1362_02_02.

How to do it...
To display inventory total text for multiple pickups of same type of object, follow these steps:

1. Start with a new copy of the mini-game Simple2Dgame_SpaceGirl.

2. Add a UI Text object (Create | UI | Text). Rename it Text-carrying-star. Change
its text to stars = 0.

3. Import the provided Fonts folder into your project.

4. In the Inspector panel, set the font of Text-carrying-star to Xolonium-Bold
(folder Fonts) and set its color to yellow. Center the text horizontally and vertically,
and set its Font Size to 32.

5. In its Rect Transform component, set its Height to 50. Edit its Rect Transform, and
while holding down SHIFT and ALT (to set pivot and position), choose the top-stretch
box. Your text should now be positioned at the middle top of the Game panel, and its
width should stretch to match that of the whole panel.

Chapter 2

85

6. Add the following C# Script Player to GameObject player-SpaceGirl in the
Hierarchy:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class Player : MonoBehaviour {
 public Text starText;
 private int totalStars = 0;

 void Start(){
 UpdateStarText();
 }

 void OnTriggerEnter2D(Collider2D hit){
 if(hit.CompareTag("Star")){
 totalStars++;
 UpdateStarText();
 Destroy(hit.gameObject);
 }
 }

 private void UpdateStarText(){
 string starMessage = "stars = " + totalStars;
 starText.text = starMessage;
 }
}

7. From the Hierarchy view, select the GameObject player-SpaceGirl. Then, from
the Inspector, access the Player (Script) component and populate the Star Text
public field with UI Text object Text-carrying-star.

8. Select the GameObject star in the Hierarchy panel and make three more copies of
this GameObject.

Note: Use keyboard shortcut CTRL + D (Windows) or CMD + D (Mac)
to quickly duplicate GameObjects.

9. Move these new GameObject to different parts of the screen.

10. Play the game—each time you pick up a star, the total should be displayed in the form
stars = 2.

Inventory GUIs

86

How it works...
The Text variable starText is a reference to the UI Text object Text-carrying-star.
The int variable totalStars represents how many stars have been collected so far; it is
initialized to zero.

In the OnTriggerEnter2D() method, the totalStars counter is incremented by 1
each time the player's character hits an object tagged Star. The collided star GameObject
is destroyed and a call is made to the UpdateStarText()method.

The UpdateStarText() method updates the text content of UI Text object
Text-carrying-star with text string stars = concatenated with the integer value
inside variable totalStars to display the updated total number of stars to the user.

Displaying multiple pickups of the same
object with multiple status icons

If there is a small, fixed total number of an item to be collected rather than text totals, an
alternative effective UI approach is to display placeholder icons (empty or greyed out pictures)
to show the user how many of the item remain to be collected, and each time an item is
picked up, a placeholder icon is replaced by a full color collected icon.

In this recipe, we use grey-filled star icons as the placeholders and yellow-filled star icons
to indicate each collected star, as shown in the following screenshot.

Since our UI code is getting a little more complicated, this recipe will implement the MVC
design pattern to separate the view code from the core player logic (as introduced at the
end of recipe Displaying single object pickups with carrying and not-carrying text).

Getting ready
This recipe assumes that you are starting with the project Simple2Dgame_SpaceGirl setup
from the first recipe in this chapter.

Chapter 2

87

How to do it...
To display multiple inventory icons for multiple pickups of same type of object, follow these
steps:

1. Start with a new copy of the mini-game Simple2Dgame_SpaceGirl.

2. Add the following C# Script Player to GameObject player-SpaceGirl in the
Hierarchy:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class Player : MonoBehaviour {
 private PlayerInventoryDisplay playerInventoryDisplay;
 private int totalStars = 0;

 void Start(){
 playerInventoryDisplay = GetComponent<PlayerInventoryDispl
ay>();
 }

 void OnTriggerEnter2D(Collider2D hit){
 if(hit.CompareTag("Star")){
 totalStars++;
 playerInventoryDisplay.OnChangeStarTotal(totalStars);
 Destroy(hit.gameObject);
 }
 }
}

3. Select GameObject star in the Hierarchy panel and make three more copies of this
GameObject (Windows CTRL + D / Mac CMD + D).

4. Move these new GameObject to different parts of the screen.

5. Add the following C# Script PlayerInventoryDisplay to the GameObject
player-SpaceGirl in the Hierarchy:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class PlayerInventoryDisplay : MonoBehaviour
{
 public Image[] starPlaceholders;

Inventory GUIs

88

 public Sprite iconStarYellow;
 public Sprite iconStarGrey;

 public void OnChangeStarTotal(int starTotal){
 for (int i = 0;i < starPlaceholders.Length; ++i){
 if (i < starTotal)
 starPlaceholders[i].sprite = iconStarYellow;
 else
 starPlaceholders[i].sprite = iconStarGrey;
 }
 }
}

6. Select the Canvas in the Hierarchy panel and add a new UI Image object (Create | UI
| Image). Rename it Image-star0.

7. Select Image-star0 in the Hierarchy panel.

8. From the Project panel, drag the sprite icon_star_grey_100 (folder Sprites)
into the Source Image field in the Inspector for the Image component.

9. Click on the Set Native Size button for this for the Image component. This will resize
the UI Image to fit the physical pixel width and height of sprite file icon_star_
grey_100.

10. Now we will position our icon at the top and left of the Game panel. Edit the UI
Image's Rect Transform component, and while holding down SHIFT and ALT (to set
pivot and position), choose the top-left box. The UI Image should now be positioned
at the top left of the Game panel.

11. Make three more copies of Image-star0 in the Hierarchy panel, naming them
Image-star1, Image-star2, and Image-star3.

12. In the Inspector panel, change the Pos X position (in the Rect Transform component)
of Image-star1 to 100, of Image-star2 to 200, and of Image-star3 to 100, as
shown in the following screenshot:

Chapter 2

89

13. From the Hierarchy view, select the GameObject player-SpaceGirl. Then, from
the Inspector, access the Player Inventory Display (Script) component and set the
Size property of public field Star Playholders to 4.

14. Next, populate the Element 0/1/2/3 array values of public field Star Playholders
with UI Image objects Image-star0/1/2/3.

15. Now, populate the Icon Star Yellow and Icon Star Grey public fields from the Project
panel with sprite icon_star_100 and icon_star_grey_100, as shown in the
following screenshot:

16. Now, when you play the scene, you should see the sequence of four grey placeholder
star icons initially, and each time you collide with a star, the next icon at the top
should turn yellow.

How it works...
Four UI Image objects Image-star0/1/2/3 have been created at the top of the screen,
initialized with the grey placeholder icon. The grey and yellow icon sprite files have been
resized to be 100 x 100 pixels, making their arrangement horizontal positioning at design
time easier, since their positions are (0,0), (100, 0), (200, 0), and (300,0). In a more
complicated game screen, or one where real estate is precious, the actual size of the
icons would probably be smaller and whatever the game graphic designer decides.

Inventory GUIs

90

The int variable totalStars represents how many stars have been collected so far; it
is initialized to zero. The PlayerInventoryDisplay variable playerInventory is a
reference to the scripted component that manages our inventory display—this variable is
set when the scene begins to run in the Start() method.

In the OnTriggerEnter2D()method, the totalStars counter is incremented by 1
each time the player's character hits an object tagged Star. As well as destroying the hit
GameObject, the OnChangeStarTotal(…) method of the PlayerInventoryDisplay
component is called, passing the new star total integer.

The OnChangeStarTotal(…)method of script class PlayerInventoryDisplay
has references to the four UI Images, and loops through each item in the array of Image
references, setting the given number of Images to yellow, and the remaining to grey. This
method is public, allowing it to be called from an instance of script class Player.

As can be seen, the code in script class Player is still quite straightforward since we have
moved all of the inventory UI logic to its own class, PlayerInventory.

Revealing icons for multiple object pickups
by changing the size of a tiled image

Another approach that could be taken to show increasing numbers of images is to make use
of tiled images. The same visual effect as in the previous recipe can also be achieved by
making use of a tiled grey star image of width 400 (showing four copies of the grey star icon),
behind a tiled yellow star image, whose width is 100 times the number of stars collected. We'll
adapt the previous recipe to illustrate this technique.

Getting ready
This recipe follows on from the previous recipe in this chapter.

How to do it...
To display grey and yellow star icons for multiple object pickups using tiled images, follow
these steps:

1. Make a copy of your work for the previous recipe.

2. In the Hierarchy panel, remove the four Image-star0/1/2/3 UI Images in the Canvas.

3. Select the Canvas in the Hierarchy panel and add a new UI Image object (Create |
UI | Image). Rename it Image-stars-grey.

4. Select Image-stars-grey in the Hierarchy panel.

Chapter 2

91

5. From the Project panel, drag sprite icon_star_grey_100 (folder Sprites) into
the Source Image field in the Inspector (in the Image (Script) component).

6. Click on the Set Native Size button for this for the Image component. This will resize
the UI Image to fit the physical pixel width and height of sprite file star_empty_icon.

7. Now we will position our icon at the top and left of the Game panel. Edit the UI
Image's Rect Transform component, and while holding down SHIFT and ALT (to set
pivot and position), choose the top-left box. The UI Image should now be positioned
at the top left of the Game panel.

8. In the Inspector panel, change the Width (in the Rect Transform component)
of Image-stars-grey to 400. Also, set the Image Type (in the Image (Script)
component) to Tiled, as shown in the following screenshot:

9. Make a copy of Image-stars-grey in the Hierarchy panel, naming the copy
Image-stars-yellow.

10. With Image-stars-yellow selected in Hierarchy panel, from the Project panel,
drag the sprite icon_star_100 (folder Sprites) into the Source Image field in
the Inspector (in the Image (Script) component).

11. Set the width of Image-stars-yellow to 0 (in the Rect Transform component).
So, now we have the yellow stars tiled image above the grey tiled image, but since
its width is zero, we don't see any of the yellow stars yet.

Inventory GUIs

92

12. Replace the existing C# Script PlayerInventoryDisplay with the following code:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class PlayerInventoryDisplay : MonoBehaviour
{
 public Image iconStarsYellow;

 public void OnChangeStarTotal(int starTotal){
 float newWidth = 100 * starTotal;
 iconStarsYellow.rectTransform.SetSizeWithCurrentAnchors(RectTr
ansform.Axis.Horizontal, newWidth);
 }
}

13. From the Hierarchy view, select the GameObject player-SpaceGirl. Then, from
the Inspector, access the Player Inventory Display (Script) component and populate
the Icons Stars Yellow public field with UI Image object Image-stars-yellow.

How it works...
UI Image Image-stars-grey is a tiled image, wide enough (400px) for grey sprite
icon_star_grey_100 to be shown four times. UI Image Image-stars-yellow is a tiled
image, above the grey one, initially with width set to zero, so no yellow stars can be seen.

Each time a star is picked up, a call is made to the OnChangeStarTotal(…)method of the
script class PlayerInventoryDisplay , passing the new integer number of stars collected.
By multiplying this by the width of the yellow sprite image (100px), we get the correct width to
set for UI Image Image-stars-yellow so that the corresponding number of yellow stars
will now be seen by the user. Any stars that remain to be collected will still be seen as the grey
stars that are not yet covered up.

The actual task of changing the width of UI Image Image-stars-yellow is completed by
calling the SetSizeWithCurrentAnchors(…) method. The first parameter is the axis, so
we pass constant RectTransform.Axis.Horizontal so that it will be the width that is
changed. The second parameter is the new size for that axis—so we pass a value that is 100
times the number of stars collected so far (variable newWidth).

Chapter 2

93

Displaying multiple pickups of different
objects as a list of text via a dynamic List<>
of PickUp objects

When working with different kinds of pickups, one approach is to use a C# List to maintain a
flexible-length data structure of the items currently in the inventory. In this recipe, we will show
you how, each time an item is picked up, a new object is added to such a List collection. An
iteration through the List is how the text display of items is generated each time the inventory
changes. We introduce a very simple PickUp script class, demonstrating how information
about a pickup can be stored in a scripted component, extracted upon collision, and stored
in our List.

Getting ready
This recipe assumes that you are starting with the project Simple2Dgame_SpaceGirl setup
from the first recipe in this chapter. The font you need can be found in the 1362_02_02 folder.

How to do it...
To display inventory total text for multiple pickups of different object types, follow these steps:

1. Start with a new copy of the mini-game Simple2Dgame_SpaceGirl.

2. Edit the tags, changing tag Star to Pickup. Ensure that the star GameObject now
has the tag Pickup.

3. Add the following C# Script PickUp to GameObject star in the Hierarchy:
using UnityEngine;
using System.Collections;

public class PickUp : MonoBehaviour {
 public string description;
}

Inventory GUIs

94

4. In the Inspector, change the description property of component Pick Up (Script) of
GameObject star to the text star, as shown in the following screenshot:

5. Select the GameObject star in the Hierarchy panel and make a copy of this
GameObject, renaming the copy heart.

6. In the Inspector, change the description property of component Pick Up (Script)
of GameObject heart to the text heart. Also, drag from the Project panel (folder
Sprites) image healthheart into the Sprite property of GameObject heart. The
player should now see the heart image on screen for this pickup item.

7. Select the GameObject star in the Hierarchy panel and make a copy of this
GameObject, renaming the copy key.

8. In the Inspector, change the description property of component Pick Up (Script) of
GameObject key to the text key. Also, drag from the Project panel (folder Sprites)
image icon_key_green_100 into the Sprite property of GameObject key. The player
should now see the key image on screen for this pickup item.

9. Make another one or two copies of each pickup GameObject and arrange them
around the screen, so there are two or three each of star, heart, and key pickup
GameObjects.

10. Add the following C# Script Player to GameObject player-SpaceGirl in the
Hierarchy:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;
using System.Collections.Generic;

public class Player : MonoBehaviour {
 private PlayerInventoryDisplay playerInventoryDisplay;
 private List<PickUp> inventory = new List<PickUp>();

 void Start(){
 playerInventoryDisplay = GetComponent<PlayerInventoryDispl
ay>();

Chapter 2

95

 playerInventoryDisplay.OnChangeInventory(inventory);
 }

 void OnTriggerEnter2D(Collider2D hit){
 if(hit.CompareTag("Pickup")){
 PickUp item = hit.GetComponent<PickUp>();
 inventory.Add(item);
 playerInventoryDisplay.OnChangeInventory(inventory);
 Destroy(hit.gameObject);
 }
 }
}

11. Add a UI Text object (Create | UI | Text). Rename it Text-inventory-list.
Change its text to the quick brown fox jumped over the lazy dog the quick brown
fox jumped over the lazy dog, or another long list of nonsense words, to test the
overflow settings you change in the next step.

12. In the Text (Script) component, ensure that Horizontal Overflow is set to Wrap,
and set Vertical Overflow to Overflow—this will ensure that the text will wrap onto
a second or third line (if needed) and not be hidden if there are lots of pickups.

13. In the Inspector panel, set its font to Xolonium-Bold (folder Fonts) and set its color
to yellow. For the Alignment property, center the text horizontally and ensure that
the text is top aligned vertically, and set the Font Size to 28 and choose a yellow
text Color.

14. Edit its Rect Transform and set its Height to 50. Then, while holding down
SHIFT and ALT (to set pivot and position), choose the top-stretch box. The text should
now be positioned at the middle top of the Game panel, and its width should stretch
to match that of the whole panel.

15. Your text should now appear at the top of the game panel.

16. Add the following C# Script PlayerInventoryDisplay to GameObject
player-SpaceGirl in the Hierarchy:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;
using System.Collections.Generic;

public class PlayerInventoryDisplay : MonoBehaviour
{
 public Text inventoryText;

 public void OnChangeInventory(List<PickUp> inventory){
 // (1) clear existing display

Inventory GUIs

96

 inventoryText.text = "";

 // (2) build up new set of items
 string newInventoryText = "carrying: ";
 int numItems = inventory.Count;
 for(int i = 0; i < numItems; i++){
 string description = inventory[i].description;
 newInventoryText += " [" + description+ "]";
 }

 if(numItems < 1) newInventoryText = "(empty inventory)";

 // (3) update screen display
 inventoryText.text = newInventoryText;
 }
}

17. From the Hierarchy view, select the GameObject player-SpaceGirl. Then, from
the Inspector, access the Player Inventory Display (Script) component and populate
the Inventory Text public field with the UI Text object Text-inventory-list.

18. Play the game—each time you pick up a star or key or heart, the updated list of what
you are carrying should be displayed in the form carrying: [key] [heart].

How it works...
In the script class Player, the variable inventory is a C# List<>. This is a flexible data
structure, which can be sorted, searched, and dynamically (at run time, when the game is
being played) have items added to and removed from it. The <PickUp> in pointy brackets
means that variable inventory will contain a list of PickUp objects. For this recipe, our
PickUp class just has a single field, a string description, but we'll add more sophisticated
data items in PickUp classes in later recipes.

When the scene starts, the Start() method of script class Player gets a reference to the
PlayerInventoryDisplay scripted component and also initializes variable inventory
to be a new, empty C# List of PickUp objects. When the OnColliderEnter2D(…) method
detects collisions with items tagged Pickup, the PickUp object component of the item hit is
added to our inventory list. A call is also made to the OnChangeInventory(…) method
of playerInventoryDisplay to update out inventory display to the player, passing the
updated inventory List as a parameter.

The script class playerInventoryDisplay has a public variable, linked to the UI Text object
Text-inventory-list. The OnChangeInventory(…) method first sets the UI text to empty,
and then loops through the inventory list, building up a string of each items description in square
brackets ([key], [heart], and so on). If there were no items in the list, then the string is set to the
text (empty inventory). Finally, the text property of the UI Text object Text-inventory-
list is set to the value of this string representation of what is inside variable inventory.

Chapter 2

97

There's more...
Some details you don't want to miss:

Order items in the inventory list alphabetically
It would be nice to alphabetically sort the words in the inventory list—both for neatness and
consistency (so, in a game, if we pick up a key and a heart, it will look the same regardless of
which order), but also so that items of the same type will be listed together, so we can easily
see how many of each item we are carrying.

To implement the alphabetic sorting of the items in the inventory list, we need to do the
following:

1. Add the following C# code to the beginning of method OnChangeInventory(...)
in the script class PlayerInventoryDisplay:
public void OnChangeInventory(List<PickUp> inventory){
 inventory.Sort(
 delegate(PickUp p1, PickUp p2){
 return p1.description.CompareTo(p2.description);
 }
);

 // rest of the method as before …
}

2. You should now see all the items listed in alphabetic sequence. This C# code takes
advantage of the List.Sort(…) method, a feature of collections whereby each
item can be compared to the next, and they are swapped if in the wrong order (if the
CompareTo(…) methods returns false).

Inventory GUIs

98

Displaying multiple pickups of different
objects as text totals via a dynamic
Dictionary<> of PickUp objects and "enum"
pickup types

While the previous recipe worked fine, any old text might have been typed into the description
for a pickup or perhaps mistyped (star, Sstar, starr, and so on). A much better way of
restricting game properties to one of a predefined (enumerated) list of possible values is to
use C# enums. As well as removing the chance of mistyping a string, it also means that we
can write code to appropriately deal with the predefined set of possible values. In this recipe,
we will improve our general purpose PickUp class by introducing three possible pickup types
(Star, Heart, and Key), and write inventory display code that counts the number of each type
of pickup being carried and displays these totals via a UI Text object on screen. We also
switch from using a List to using a Dictionary, since the Dictionary data structure is designed
specifically for key-value pairs, perfect for associating a numeric total with an enumerated
pickup type.

Getting ready
This recipe follows on from the previous recipe in this chapter.

How to do it...
To display multiple pickups of different objects as text totals via a dynamic Dictionary,
follow these steps:

1. Make a copy of your work for the previous recipe.

2. Replace the content of script class PickUp with the following code:
using UnityEngine;
using System.Collections;

public class PickUp : MonoBehaviour {
 public enum PickUpType {

Chapter 2

99

 Star, Key, Heart
 }

 public PickUpType type;
}

3. Replace the content of script class Player with the following code:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;
using System.Collections.Generic;

public class Player : MonoBehaviour {
 private InventoryManager inventoryManager;

 void Start(){
 inventoryManager = GetComponent<InventoryManager>();
 }

 void OnTriggerEnter2D(Collider2D hit){
 if(hit.CompareTag("Pickup")){
 PickUp item = hit.GetComponent<PickUp>();
 inventoryManager.Add(item);
 Destroy(hit.gameObject);
 }
 }
}

4. Replace the content of script class PlayerInventoryDisplay with the
following code:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;
using System.Collections.Generic;

public class PlayerInventoryDisplay : MonoBehaviour {
 public Text inventoryText;
 private string newInventoryText;

 public void OnChangeInventory(Dictionary<PickUp.PickUpType, int>
inventory){
 inventoryText.text = "";

 newInventoryText = "carrying: ";

Inventory GUIs

100

 int numItems = inventory.Count;

 foreach(var item in inventory){
 int itemTotal = item.Value;
 string description = item.Key.ToString();
 newInventoryText += " [" + description + " " + itemTotal +
"]";
 }

 if(numItems < 1) newInventoryText = "(empty inventory)";

 inventoryText.text = newInventoryText;
 }
}

5. Add the following C# Script InventoryManager to the GameObject player-
SpaceGirl in the Hierarchy:
using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class InventoryManager : MonoBehaviour {
 private PlayerInventoryDisplay playerInventoryDisplay;
 private Dictionary<PickUp.PickUpType, int> items = new
Dictionary<PickUp.PickUpType, int>();

 void Start(){
 playerInventoryDisplay = GetComponent<PlayerInventoryDispl
ay>();
 playerInventoryDisplay.OnChangeInventory(items);
 }

 public void Add(PickUp pickup){
 PickUp.PickUpType type = pickup.type;
 int oldTotal = 0;
 if(items.TryGetValue(type, out oldTotal))
 items[type] = oldTotal + 1;
 else
 items.Add (type, 1);

 playerInventoryDisplay.OnChangeInventory(items);
 }
}

Chapter 2

101

6. In the Hierarchy (or Scene) panel, select each pickup GameObject in turn, and
choose from the drop-down menu its corresponding Type in the Inspector panel. As
you can see, public variables that are of an enum type are automatically restricted to
the set of possible values as a combo-box drop-down menu in the Inspector panel.

7. Play the game. First, you should see a message on screen stating the inventory is
empty, and then as you pick up one or more items of each pickup type, you'll see text
totals of each type you have collected.

How it works...
Each pickup GameObject in the scene has a scripted component of class PickUp. The
PickUp object for each Pickup GameObject has a single property, a pickup type, which has
to be one of the enumerated set of Star, Key, Heart. The Player script class gets a
reference to the InventoryManager component via its Start() method, and each time
the player's character collides with a pickup GameObject, it calls the Add(…) method of the
inventory manager, passing the PickUp object of the object collided with.

In this recipe, the inventory being carried by the player is being represented by a C#
Dictionary. In this case, we have in script class InventoryManager a dictionary of key-
value pairs, where the key is one of the possible PickUp.PickUpType enumerated values,
and the value is an integer total of how many of that type of pickup is being carried. Each
InventoryItemTotal object has just two properties: a PickUp type and an integer total.
This extra layer of the InventoryManager has been added between script class Player
and PlayerInventoryDisplay to both separate the Player behavior from how the
inventory is internally stored and to prevent the Player script class from becoming too large
and attempting to handle too many different responsibilities.

C# dictionaries provide a TryGetValue(…) method, which receives parameters of a key
and is passed a reference to a variable the same data type as the value for the Dictionary.
When the Add(…) method of the inventory manager is called, the type of the PickUp
object is tested to see if a total for this type is already in Dictionary items. If an item
total is found inside the Dictionary for the given type, then the value for this item in the
Dictionary is incremented. If no entry is found for the given type, then a new element is
added to the Dictionary with a total of 1.

Inventory GUIs

102

The last action of the Add(…) method is to call the OnChangeInventory(…) method of the
PlayerInventoryDisplay scripted component of the player's GameObject to update the
text totals displayed on screen. This method in PlayerInventoryDisplay iterates through
the Dictionary, building up a string of the type names and totals, and then updates the text
property of the UI Text object with the string showing the inventory totals to the player.

Learn more about using C# lists and dictionaries in Unity in the Unity Technologies tutorial at
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/
lists-and-dictionaries.

Generalizing multiple icon displays using UI
Grid Layout Groups (with scrollbars!)

The recipes in this chapter up to this point have been hand-crafted for each situation. While
this is fine, more general and automated approaches to inventory UIs can sometimes save
time and effort but still achieve visual and usability results of equal quality. In the next
recipe, we will begin to explore a more engineered approach to inventory UIs by exploiting the
automated sizing and layouts offered by Unity 5's Grid Layout Group component.

Getting ready
This recipe assumes that you are starting with the project Simple2Dgame_SpaceGirl
setup from the first recipe in this chapter. The font you need can be found in the 1362_02_02
folder.

How to do it...
To display grey and yellow star icons for multiple object pickups using UI grid layout groups,
follow these steps:

1. Start with a new copy of the mini-game Simple2Dgame_SpaceGirl.

2. In the Hierarchy panel, create a UI Panel Panel–background (Create | UI | Panel).

https://unity3d.com/learn/tutorials/modules/intermediate/scripting/lists-and-dictionaries
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/lists-and-dictionaries

Chapter 2

103

3. Let's now position Panel–background at the top of the Game panel, stretching
the horizontal width of the canvas. Edit the UI Image's Rect Transform component,
and while holding down SHIFT and ALT (to set pivot and position), choose the
top-stretch box.

4. The panel will still be taking up the whole game window. So, now in the Inspector
panel, change the Height (in the Rect Transform component) of Panel–
background to 100, as shown in the following screenshot:

5. Add a UI Text object (Create | UI | Text), rename it Text-inventory, and change
its text to Inventory.

6. In the Hierarchy panel, child this UI Text object to panel Panel–background.

7. In the Inspector panel, also set the font of Text-inventory to Xolonium-Bold (the
Fonts folder). Center the text horizontally, top align the text vertically, set its Height
to 50, and set the Font Size to 23.

8. Edit the Rect Transform of Text-inventory, and while holding down SHIFT and
ALT (to set pivot and position), choose the top-stretch box. The text should now be
positioned at the middle top of the UI Panel Panel–background and its width
should stretch to match that of the whole panel.

9. Select the Canvas in the Hierarchy panel and add a new UI Panel object
(Create | UI | Image). Rename it Panel-slot-grid.

10. Position Panel-slot-grid at the top of the Game panel, stretching the horizontal
width of the canvas. Edit the UI Image's Rect Transform component, and while
holding down SHIFT and ALT (to set pivot and position), choose the top-stretch box.

Inventory GUIs

104

11. In the Inspector panel, change the Height (in the Rect Transform component) of
Panel-slot-grid to 80 and set its Top to 20 (so it is below UI Text GameObject
Text-inventory).

12. With the panel Panel-slot-grid selected in the Hierarchy panel, add a grid
layout group component (Add Component | Layout | Grid Layout Group). Set
Cell Size to 70 x 70 and Spacing to 5 x 5. Also, set the Child Alignment to Middle
Center (so our icons will have even spacing at the far left and right), as shown in
the following screenshot:

13. With the panel Panel-slot-grid selected in the Hierarchy panel, add a mask
(script) component (Add Component | UI | Mask). Uncheck the option Show Mask
Graphic. Having this mask component means that any overflow of our grid will NOT be
seen by the user—only content within the image area of the panel Panel-slot-grid
will ever be visible.

14. Add to your Canvas a UI Image object (Create | UI | Image). Rename it Image-slot.

15. In the Hierarchy panel, child UI Image object Image-slot to panel
Panel–slot-grid.

16. Set the Source Image of Image-slot to the Unity provided Knob (circle) image,
as shown in the following screenshot:

Chapter 2

105

17. Since Image-slot is the only UI object inside Panel-slot-grid, it will be displayed
(sized 70 x 70) in center in that panel, as shown in the following screenshot:

18. Each image slot will have a yellow star child image and a grey star child image. Let's
create those now.

19. Add to your Canvas a UI Image object (Create | UI | Image). Rename it
Image-star-yellow.

20. In the Hierarchy panel, child UI Image object Image-star-yellow to image
Image–slot.

21. Set the Source Image of Image-star-yellow to the icon_star_100 image
(in folder Sprites).

Inventory GUIs

106

22. Now we will set our yellow star icon image to fully fill its parent Image-slot by
stretching horizontally and vertically. Edit the UI Image's Rect Transform component,
and while holding down SHIFT and ALT (to set pivot and position), choose the bottom
right option to fully stretch horizontally and vertically. The UI Image Image-star-
yellow should now be visible in the middle of the Image-slot circular Knob
image, as shown in the following screenshot:

23. Duplicate Image-star-yellow in the Hierarchy panel, naming the copy
Image-star-grey. This new GameObject should also be a child of Image-slot.

24. Change the Source Image of Image-star-grey to the icon_star_grey_100
image (in folder Sprites). At any time, our inventory slot can now display nothing,
a yellow star icon, or a grey star icon, depending on whether Image-star-yellow
and Image-star-grey are enabled or not: we'll control this through the inventory
display code later in this recipe.

25. In the Hierarchy panel, ensure that Image-slot is selected, and add the C# Script
PickupUI with the following code:
using UnityEngine;
using System.Collections;

public class PickupUI : MonoBehaviour {
 public GameObject starYellow;
 public GameObject starGrey;

 void Awake(){
 DisplayEmpty();
 }

 public void DisplayYellow(){
 starYellow.SetActive(true);
 starGrey.SetActive(false);
 }

 public void DisplayGrey(){
 starYellow.SetActive(false);
 starGrey.SetActive(true);
 }

Chapter 2

107

 public void DisplayEmpty(){
 starYellow.SetActive(false);
 starGrey.SetActive(false);
 }
}

26. With the GameObject Image-slot selected in the Hierarchy panel, drag each
of its two children Image-star-yellow and Image-star-grey into their
corresponding Inspector panel Pickup UI slots Star Yellow and Star Grey, as
shown in the following screenshot:

27. In the Hierarchy panel, make nine duplicates of Image-slot in the Hierarchy
panel; they should automatically be named Image-slot 1 .. 9. See the following
screenshot to ensure the Hierarchy of your Canvas is correct—the parenting of Image-
slot as a child of Image-slot-grid, and the parenting of Image-star-yellow
and Image-star-grey as children of each Image-slot is very important.

Inventory GUIs

108

28. In the Hierarchy panel, ensure that player-SpaceGirl is selected, and add the C#
script Player with the following code:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class Player : MonoBehaviour {
 private PlayerInventoryModel playerInventoryModel;

 void Start(){
 playerInventoryModel = GetComponent<PlayerInventoryModel>();
 }

 void OnTriggerEnter2D(Collider2D hit){
 if(hit.CompareTag("Star")){
 playerInventoryModel.AddStar();
 Destroy(hit.gameObject);
 }
 }
}

29. In the Hierarchy panel, ensure that player-SpaceGirl is selected, and add the C#
script PlayerInventoryModel with the following code:
using UnityEngine;
using System.Collections;

public class PlayerInventoryModel : MonoBehaviour {
 private int starTotal = 0;
 private PlayerInventoryDisplay playerInventoryDisplay;

 void Start(){
 playerInventoryDisplay = GetComponent<PlayerInventoryDispl
ay>();
 playerInventoryDisplay.OnChangeStarTotal(starTotal);
 }

 public void AddStar(){
 starTotal++;
 playerInventoryDisplay.OnChangeStarTotal(starTotal);
 }
}

Chapter 2

109

30. In the Hierarchy panel, ensure that player-SpaceGirl is selected, and add the C#
script PlayerInventoryDisplay with the following code:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class PlayerInventoryDisplay : MonoBehaviour
{
 const int NUM_INVENTORY_SLOTS = 10;
 public PickupUI[] slots = new PickupUI[NUM_INVENTORY_SLOTS];

 public void OnChangeStarTotal(int starTotal){
 for(int i = 0; i < NUM_INVENTORY_SLOTS; i++){
 PickupUI slot = slots[i];
 if(i < starTotal)
 slot.DisplayYellow();
 else
 slot.DisplayGrey();
 }
 }
}

31. With GameObject player-SpaceGirl selected in the Hierarchy panel, drag the
ten Image-slot GameObjects into their corresponding locations in the Player
Inventory Display (Script) component array Slots, in the Inspector panel, as shown
in the following screenshot:

32. Save the scene and play the game. As you pick up stars, you should see more of the
grey stars change to yellow in the inventory display.

Inventory GUIs

110

How it works...
We have created a simple panel (Panel-background) and text at the top of the game
canvas—showing a greyish background rectangle and text "Inventory". We created a small
panel inside this area (Panel-slot-grid), with a grid layout group component, which
automatically sizes and lays out the 10 Image-slot GameObjects we created with the knob
(circle) source image. By adding a mask component to Panel-slot-grid, we ensure that
no content will overflow outside of the rectangle of the source image for this panel.

Each of the 10 Image-slot GameObjects that are children of Panel-slot-grid contains
a yellow star image and a grey star image. Also, each Image-slot GameObjects has a script
component PickupUI. The PickupUI script offers three public methods, which will show
just the yellow star image, just the grey star image, or neither (so, an empty knob circle image
will be seen).

Our player's character GameObject player-SpaceGirl has a very simple basic Player
script—this just detected collisions with objects tagged Star, and when this happens,
it removes the star GameObject collided with and calls the AddStar() method to its
playerInventoryModel scripted component. The PlayerInventoryModel C# script
class maintains a running integer total of the number of stars added to the inventory. Each
time the AddStar() method is called, it increments (adds 1) to this total, and then calls the
OnChangeStarTotal(…) method of scripted component playerInventoryDisplay.
Also, when the scene starts, an initial call is made to the OnChangeStarTotal(…) method
so that the UI display for the inventory is set up to show that we are initially carrying no stars.

The C# script class PlayerInventoryDisplay has two properties: one is a constant
integer defining the number of slots in our inventory, which for this game we set to 10, and
the other variable is an array of references to PickupUI scripted components—each of these
is a reference to the scripted component in each of the 10 Image-slot GameObjects in our
Panel-slot-grid. When the OnChangeStarTotal(…) method is passed the number of
stars we are carrying, it loops through each of the 10 slots. While the current slot is less than
our star total, a yellow star is displayed, by the calling of the DisplayYellow() method of
the current slot (PickupUI scripted component). Once the loop counter is equal to or larger
than our star total, then all remaining slots are made to display a grey star via the calling of
method DisplayGrey().

This recipe is an example of the low coupling of the MVC design pattern. We have designed
our code to not rely or make too many assumptions about other parts of the game so that
the chances of a change in some other part of our game breaking our inventory display code
are much smaller. The display (view) is separated from the logical representation of what we
are carrying (model), and changes to the model are made by public methods called from the
player (controller).

Chapter 2

111

Note: It might seem that we could make our code simpler by assuming
that slots are always displaying grey (no star) and just changing one slot to
yellow each time a yellow star is picked up. But this would lead to problems
if something happens in the game (for example, hitting a black hole or being
shot by an alien) that makes us drop one or more stars. C# script class
PlayerInventoryDisplay makes no assumptions about which slots
may or may not have been displayed grey or yellow or empty previously—
each time it is called, it ensures that an appropriate number of yellow stars
are displayed, and all other slots are displayed with grey stars.

There's more...
Some details you don't want to miss:

Add a horizontal scrollbar to the inventory slot display
We can see 10 inventory slots now—but what if there are many more? One solution is to
add a scroll bar so that the user can scroll left and right, viewing 10 at a time, as shown in
the following screenshot. Let's add a horizontal scroll bar to our game. This can be achieved
without any C# code changes, all through the Unity 5 UI system.

To implement a horizontal scrollbar for our inventory display, we need to do the following:

1. Increase the height of Panel-background to 130 pixels.

2. In the Inspector panel, set the Child Alignment property of component Grid Layout
Group (Script) of Panel-slot-grid to Upper Left. Then, move this panel to the
right a little so that the 10 inventory icons are centered on screen.

3. In the Hierarchy panel, duplicate Image-slot 9 three more times so that there are now
13 inventory icons in Panel-slot-grid.

4. In the Scene panel, drag the right-hand edge of panel Panel-slot-grid to make it
wide enough so that all 13 inventory icons fit horizontally—of course the last three will
be off screen, as shown in the following screenshot:

Inventory GUIs

112

5. Add a UI Panel to the Canvas and name it Panel-scroll-container, and tint
it red by setting the Color property of its Image (Script) component to red.

6. Size and position Panel-scroll-container so that it is just behind our
Panel-slot-grid. So, you should now see a red rectangle behind the 10
inventory circle slots.

7. In the Hierarchy panel, drag Panel-slot-grid so that it is now childed to
Panel-scroll-container.

8. Add a UI Mask to Panel-scroll-container so now you should only be able
to see the 10 inventory icons that fit within the rectangle of this red-tinted panel.

Note: You may wish to temporarily set this mask component
as inactive so that you can see and work on the unseen parts
of Panel-slot-grid if required.

9. Add a UI Scrollbar to the Canvas and name it Scrollbar-horizontal. Move it
to be just below the 10 inventory icons, and resize it to be the same width as the
red-tinted Panel-scroll-container, as shown in the following screenshot:

10. Add a UI Scroll Rect component to Panel-scroll-container.

11. In the Inspector panel, drag Scrolbar-horizontal to the Horizontal Scrollbar
property of the Scroll Rect component of Panel-scroll-container.

12. In the Inspector panel, drag Panel-slot-grid to the Content property of
the Scroll Rect component of Panel-scroll-container, as shown in the
following screenshot:

Chapter 2

113

13. Now, ensure the mask component of Panel-scroll-container is set as active
so that we don't see the overflow of Panel-slot-grid and uncheck this mask
components option to Show Mask Graphic (so that we don't see the red rectangle
any more).

You should now have a working scrollable inventory system. Note that the last three new icons
will just be empty circles, since the inventory display script does not have references to, or
attempt to make, any changes to these extra three slots; so the script code would need to be
changed to reflect every additional slot we add to Panel-slot-grid.

The automation of PlayerInventoryDisplay getting references
to all the slots
There was a lot of dragging slots from the Hierarchy panel into the array for the scripted
component PlayerInventoryDisplay. This takes a bit of work (and mistakes might be
made when dragging items in the wrong order or the same item twice). Also, if we change the
number of slots, then we may have to do this all over again or try to remember to drag more
slots if we increase the number, and so on. A better way of doing things is to make the first
task of the script class PlayerInventoryDisplay when the scene begins to create each
of these Image-slot GameObjects as a child of Panel-slot-grid and populate the
array at the same time.

To implement the automated population of our scripted array of PickupUI objects for this
recipe, we need to do the following:

1. Create a new folder named Prefabs. In this folder, create a new empty prefab
named starUI.

2. From the Hierarchy panel, drag the GameObject Image-slot into your new empty
prefab named starUI. This prefab should now turn blue, showing it is populated.

3. In the Hierarchy panel, delete GameObject Image-slot and all its copies
Image-slot 1 – 9.

4. Replace C# Script PlayerInventoryDisplay in GameObject player-
SpaceGirl with the following code:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class PlayerInventoryDisplay : MonoBehaviour
{
 const int NUM_INVENTORY_SLOTS = 10;
 private PickupUI[] slots = new PickupUI[NUM_INVENTORY_SLOTS];
 public GameObject slotGrid;
 public GameObject starSlotPrefab;

 void Awake(){

Inventory GUIs

114

 for(int i=0; i < NUM_INVENTORY_SLOTS; i++){
 GameObject starSlotGO = (GameObject)
 Instantiate(starSlotPrefab);
 starSlotGO.transform.SetParent(slotGrid.transform);
 starSlotGO.transform.localScale = new Vector3(1,1,1);
 slots[i] = starSlotGO.GetComponent<PickupUI>();
 }
 }

 public void OnChangeStarTotal(int starTotal){
 for(int i = 0; i < NUM_INVENTORY_SLOTS; i++){
 PickupUI slot = slots[i];
 if(i < starTotal)
 slot.DisplayYellow();
 else
 slot.DisplayGrey();
 }
 }
}

5. With GameObject player-SpaceGirl selected in the Hierarchy panel,
drag the GameObject Panel-slot-grid into Player Inventory Display (Script)
variable Slot grid, in the Inspector panel.

6. With GameObject player-SpaceGirl selected in the Hierarchy panel, drag from the
Project panel prefab starUI into Player Inventory Display (Script) variable Star Slot
Prefab, in the Inspector panel, as shown in the following screenshot:

Chapter 2

115

The public array has been made private and no longer needs to be populated through
manual drag-and-drop. When you run the game, it will play just the same as before, with
the population of the array of images in our inventory grid panel now automated. The
Awake() method creates new instances of the prefab (as many as defined by constant NUM_
INVENTORY_SLOTS) and immediately childed them to Panel-slot-grid. Since we have a
grid layout group component, their placement is automatically neat and tidy in our panel.

Note: The scale property of the transform component of GameObjects is
reset when a GameObject changes its parent (to maintain relative child
size to parent size). So, it is a good idea to always reset the local scale
of GameObjects to (1,1,1) immediately after they have been childed
to another GameObject. We do this in the for-loop to starSlotGO
immediately following the SetParent(…) statement.

Note that we use the Awake() method for creating the instances of the prefab in
PlayerInventoryDispay so that we know this will be executed before the Start()
method in PlayerInventoryModel—since no Start() method is executed until all
Awake() methods for all GameObjects in the scene have been completed.

Automatically changing the grid cell size based on the number of
slots in inventory
Consider a situation where we wish to change the number of slots. Another alternative to
using scrollbars is to change the cell size in the Grid Layout Group component. We can
automate this through code so that the cell size is changed to ensure that NUM_INVENTORY_
SLOTS will fit along the width of our panel at the top of the canvas.

To implement the automated resizing of the Grid Layout Group cell size for this recipe, we
need to do the following:

 f Add the following method Start() to the C# Script PlayerInventoryDisplay in
GameObject player-SpaceGirl with the following code:
void Start(){
 float panelWidth = slotGrid.GetComponent<RectTransform>().rect.
width;
 print ("slotGrid.GetComponent<RectTransform>().rect = " +
slotGrid.GetComponent<RectTransform>().rect);

 GridLayoutGroup gridLayoutGroup = slotGrid.GetComponent<GridLayo
utGroup>();
 float xCellSize = panelWidth / NUM_INVENTORY_SLOTS;
 xCellSize -= gridLayoutGroup.spacing.x;

Inventory GUIs

116

 gridLayoutGroup.cellSize = new Vector2(xCellSize, xCellSize);
}

We write our code in the Start() method, rather than adding to code in the Awake()
method, to ensure that the RectTransform of GameObject Panel-slot-grid has finished
sizing (in this recipe, it stretches based on the width of the Game panel). While we can't know
the sequence in which Hierarchy GameObjects are created when a scene begins, we can rely
on the Unity behavior that every GameObject sends the Awake()message, and only after
all corresponding Awake() methods have finished executing all objects, and then sends
the Start() message. So, any code in the Start() method can safely assume that every
GameObject has been initialized.

The above screenshot shows the value of NUM_INVENTORY_SLOTS having been changed to
15, and the cell size, having been corresponding, changed, so that all 15 now fit horizontally in
our panel. Note that the spacing between cells is subtracted from the calculated available with
divided by the number of slots (xCellSize -= gridLayoutGroup.spacing.x) since that
spacing is needed between each item displayed as well.

Add some help methods to the Rect Transform script class
If we wish to further change, say, the RectTransform properties using code, we can add
extension methods by creating a file containing special static methods and using the special
"this" keyword. See the following code that adds SetWidth(…), SetHeight(…), and
SetSize(…) methods to the RectTransform scripted component:

using UnityEngine;
using System;
using System.Collections;

public static class RectTransformExtensions
{
 public static void SetSize(this RectTransform trans, Vector2
newSize) {
 Vector2 oldSize = trans.rect.size;
 Vector2 deltaSize = newSize - oldSize;
 trans.offsetMin = trans.offsetMin - new Vector2(deltaSize.x *
trans.pivot.x, deltaSize.y * trans.pivot.y);

Chapter 2

117

 trans.offsetMax = trans.offsetMax + new Vector2(deltaSize.x * (1f
- trans.pivot.x), deltaSize.y * (1f - trans.pivot.y));
 }

 public static void SetWidth(this RectTransform trans, float newSize)
{
 SetSize(trans, new Vector2(newSize, trans.rect.size.y));
 }

 public static void SetHeight(this RectTransform trans, float
newSize) {
 SetSize(trans, new Vector2(trans.rect.size.x, newSize));
 }
}

Unity C# allows us to add these extensions methods by declaring static void methods
whose first argument is in the form this <ClassName> <var>. The method can then be
called as a built-in method defined in the original class.

All we would need to do is create a new C# script class file RectTransformExtensions
in the folder Scripts in the Project panel, containing the above code. In fact, you can find
a whole set of useful extra RectTransform methods (on which the above is an extract)
created by OrbcreationBV, and it is available online at http://www.orbcreation.com/
orbcreation/page.orb?1099.

Conclusion
In this chapter, we introduced recipes demonstrating a range of C# data representations
for inventory items and a range of Unity UI interface components to display the status and
contents of player inventories at run time.

Inventory UI needs good quality graphical assets for a high quality result. Some sources of
assets that you might wish to explore include the following sites:

 f The graphics for our SpaceGirl mini game are from the Space Cute art by Daniel
Cook; he generously publishes lots of 2D art for game developers to use:

 � http://www.lostgarden.com/

 � http://www.lostgarden.com/search?q=planet+cute

 f Sethbyrd—lots of fun 2D graphics:

 � http://www.sethbyrd.com/

 f Royalty-free art for 2D games:
 � http://www.gameart2d.com/freebies.html

http://orbcreation.com/orbcreation/page.orb?1099
http://orbcreation.com/orbcreation/page.orb?1099
http://www.lostgarden.com/
http://www.lostgarden.com/search?q=planet+cute
http://www.sethbyrd.com/
http://www.gameart2d.com/freebies.html

Chapter 3

119

3
2D Animation

In this chapter, we will cover:

 f Flipping a sprite horizontally

 f Animating body parts for character movement events

 f Creating a 3-frame animation clip to make a platform continually animate

 f Making a platform start falling once stepped-on using a Trigger to move animation
from one state to another

 f Creating animation clips from sprite sheet sequences

Introduction
Unity 5 builds on the introduction of powerful 2D features in the Mecanim animation system
and the 2D physics system that were introduced in Unity 4.6 late 2014. In this chapter, we
present a range of recipes to introduce the basics of 2D animation in Unity 5, and help you
understand the relationships between the different animation elements.

2D Animation

120

The big picture
In Unity 2D animations can be created in several different ways – one way is to create many
images, each slightly different, which frame-by-frame give the appearance of movement. A
second way to create animations is by defining keyframe positions for individual parts of an
object (for example, the arms, legs, feet, head, eyes, and so on), and getting Unity to calculate
all the in-between positions when the game in running.

Both sources of animations become Animation Clips in the Animation panel. Each Animation
Clip then becomes a State in the Animator Controller State Machine. We then define under
what conditions a GameObject will Transition from one animation state (clip) to another.

Flipping a sprite horizontally
Perhaps the simplest 2D animation is a simple flip, from facing left to facing right, or facing up
to facing down, and so on. In this recipe we'll add a cute bug sprite to the scene, and write a
short script to flip its horizontal direction when the Left and Right arrow keys are pressed.

Getting ready
For this recipe, we have prepared the image you need in a folder named Sprites in folder
1362_03_01.

Chapter 3

121

How to do it...
To flip an object horizontally with arrow key presses, follow these steps:

1. Create a new Unity 2D project.

2. Import the provided image EnemyBug.png.

3. Drag an instance of the red Enemy Bug image from the Project | Sprites folder
into the scene. Position this GameObject at (0, 0, 0) and scale to (2, 2, 2).

4. Add an instance of C# script class BugFlip as a component to your Enemy
Bug GameObject:
using UnityEngine;
using System.Collections;

public class BugFlip : MonoBehaviour {
 private bool facingRight = true;

 void Update() {
 if (Input.GetKeyDown(KeyCode.LeftArrow) && facingRight)
 Flip ();
 if (Input.GetKeyDown(KeyCode.RightArrow) && !facingRight)
 Flip();
 }

 void Flip (){
 // Switch the way the player is labelled as facing.
 facingRight = !facingRight;

 // Multiply the player's x local scale by -1.
 Vector3 theScale = transform.localScale;
 theScale.x *= -1;
 transform.localScale = theScale;
 }
}

5. When you run your scene, pressing the Left and Right arrow keys should make the
bug face left or right correspondingly.

2D Animation

122

How it works...
The C# class defines a Boolean variable facingRight, which stores a true/false value
corresponding to whether or not the bug is facing right or not. Since our bug sprite is initially
facing right, then we set the initial value of facingRight to true to match this.

Method Update(), every frame, checks to see if the Left or Right arrow keys have been
pressed. If the Left arrow key is pressed and the bug is facing right, then method Flip() is
called, likewise if the Right arrow key is pressed and the bug is facing left (that is, facing right
is false), again method Flip() is called.

Method Flip() performs two actions, the first simply reverses the true/false value in variable
facingRight. The second action changes the +/- sign of the X-value of the localScale
property of the transform. Reversing the sign of the localScale results in the 2D flip that
we desire. Look inside the PlayerControl script for the BeanMan character in the next
recipe – you'll see exactly the same Flip() method being used.

Animating body parts for character
movement events

In this recipe, we'll learn to animate the hat of the Unity bean-man character in response to a
jump event.

Getting ready
For this recipe, we have prepared the files you need in folder 1362_03_02.

How to do it...
To animate body parts for character movement events, follow these steps:

1. Create a new Unity 2D project.

2. Import the provided package BeanManAssets, by choosing menu: Assets | Import
Package | Custom Package …, and then click the Import button to import all these
assets into your Project panel.

3. Increase the size of the Main Camera to 10.

4. Let's setup the 2D gravity setting for this project – we'll use the same setting as
from Unity's 2D platform tutorial, a setting of Y= -30. Set 2D gravity to this value by
choosing menu: Edit | Project Settings | Physics 2D, and then at the top change
the Y value to -30.

Chapter 3

123

5. Drag an instance of the BeanMan character2D from the Project | Prefabs folder into
the scene. Position this GameObject at (0, 3, 0).

6. Drag an instance of the sprite platformWallBlocks from the Project | Sprites folder
into the scene. Position this GameObject at (0, -4, 0).

7. Add a Box Collider 2D component to GameObject platformWallBlocks by choosing
menu: Add Component | Physics 2D | Box Collider 2D.

8. We now have a stationary platform that the player can land upon, and walk
left and right on. Create a new Layer named Ground, and assign GameObject
platformWallBlocks to this new layer, as shown in the following screenshot. Pressing
the Space key when the character is on the platform will now make him jump.

9. Currently the BeanMan character is animated (arms and legs moving) when we
make him jump. Let's remove the Animation clips and Animator controller and create
our own from scratch. Delete folders Clips and Controllers from Project | Assets |
PotatoMan2DAssets | Character2D | Animation, as shown:

10. Let's create an Animation clip (and its associated Animator controller) for our hero
character. In the Hierarchy panel select GameObject hero. Ensuring GameObject
character2D is selected in the Hierarchy, open the Animation panel, and ensure it
is in Dope Sheet view (this is the default).

2D Animation

124

11. Click the empty dropdown menu in the Animation panel (next to the greyed out word
Samples), and choose menu item [Create New Clip]:

12. Save the new clip in the Character2D | Animation folder, naming it as character-
beanman-idle. You've now created an Animation clip for the 'idle' character state
(which is not animated).

Your final game may end up with tens, or even hundreds, of
animation clips. Make things easy to search by prefixing the
names of clips with object type, name, and then description
of the animation clip.

13. Looking at the Character2D | Animation folder in the Project panel you should
now see both the Animation clip you have just created (character-beanman-idle)
and also a new Animator controller, which has defaulted to the name of your
GameObject character2D:

14. Ensuring GameObject character2D is selected in the Hierarchy, open the Animator
panel and you'll see the State Machine for controlling the animation of our character.
Since we only have one Animation clip (character-beanman-idle) then upon entry the
State Machine immediately enters this state.

Chapter 3

125

15. Run your scene – since the character is always in the 'idle' state, we see no animation
yet when we make it jump.

16. Now we'll create a 'jump' Animation clip which animates the hat. Click the empty
dropdown menu in the Animation panel (next to the greyed out word 'Samples'), and
create a new clip in your Animation folder, naming it character-beanman-jump.

17. Click button Add Property, and chose Transform | Position of the hat child object, by
clicking its '+' plus-sign button. We are now recording changes to the (X, Y, Z) position
of GameObject hat in this animation clip:

18. You should now see 2 'keyframes' at 0.0 and at 1.0. These are indicated by diamonds
in the Timeline area in the right-hand-section of the Animation panel.

2D Animation

126

19. Click to select the first keyframe (at time 0.0). Now in the Scene panel move the hat
up and left a little, away from the head. You should see that all three X, Y, Z values
have a red background in the Inspector – this is to inform you that the values of the
Transform component are being recorded in the animation clip:

20. Since 1 second is perhaps too long for our jump animation, drag the second keyframe
diamond to the left to a time of 0.5.

21. We now need to define when the character should Transition from the 'idle' state to
the 'jump' state. In the Animator panel select state character-beanman-idle, and
create a transition to the state character-beanman-jump by right-mouse-clicking and
choosing menu Make Transition, then drag the transition arrow to state character-
beanman-jump, as shown:

Chapter 3

127

22. Now let's add a Trigger parameter named 'Jump', by clicking on the add parameter
plus-sign "+" button at the top-left of the Animator panel, choosing Trigger, and
typing the name Jump:

23. We can now define the properties for when our character should Transition from idle
to jump. Click the Transition arrow to select it, and set the following 4 properties in
the Inspector panel:

 � Has Exit Time: uncheck

 � Transition Duration: 0.01

 � Interruption State: Current State

 � Conditions: Add Jump (click plus-sign '+' button at bottom)

2D Animation

128

24. Save and run your scene. Once the character has landed on the platform and you
press the SPACE key to jump, you'll now see the character's hat jump away from his
head, and slowly move back. Since we haven't added any transition to ever leave the
Jump state, this Animation clip will loop, so the hat keeps on moving even when the
jump is completed.

25. In the Animator panel select state character-beanman-jump and add a new
Transition back to state character-beanman-idle. Select this Transition arrow
and in the Inspector panel sets its properties as follows:

 � Has Exit Time: (leave as checked)

 � Exit time: 0.5 (this needs to be the same time value as the second keyfame
of our Jump animation clip)

 � Transition Duration: 0.01

 � Interruption State: Current State

26. Save and run your scene. Now when you jump the hat should animate once, after
which the character immediately returns to its Idle state.

How it works...
You have added an Animation controller State Machine to GameObject character2D. The
two Animation clips you created (idle and jump) appear as States in the Animator panel. You
created a Transition from Idle to Jump when the 'Jump' Trigger parameter is received by the
State Machine. You created a second Transition, which transitions back to the Idle state after
waiting 0.5 seconds (the same duration between the 2 keyframes in our Jump Animation clip).

Note that the key to everything working for the bean-man character is that when we make
the character jump with the SPACE key, then code in the PlayerControl C# scripted
component of GameObject character2D, as well as making the sprite move upwards on
screen, also sends a SetTrigger(…) message to the Animator controller component,
for the Trigger named Jump.

The difference between a Boolean Parameter and a Trigger is that a Trigger
is temporality set to True and once the SetTrigger(…) event has been
'consumed' by a state transition it automatically returns to being False.
So Triggers are useful for actions we wish to do once and then revert to a
previous state. A Boolean Parameter is a variable, which can have its value
set to true/or False at different times during the game, and so different
Transitions can be created to fire depending on the value of the variable at
any time. Note that Boolean parameters have to have their values explicitly
set back to False with a SetBool(…).

Chapter 3

129

The following screenshot highlights the line of code that sends the SetTrigger(…) message:

State Machines for animations of a range of motions (running/walking/jumping/falling/dying
and so on.) will have more states and transitions. The Unity-provided bean-man character has
a more complex State Machine, and more complex animations (of hands and feet, and eyes
and hat and so on, for each Animation clip), which you may find useful to explore.

Learn more about the Animation view on the Unity Manual web pages at http://docs.
unity3d.com/Manual/AnimationEditorGuide.html.

Creating a 3-frame animation clip to make
a platform continually animate

In this recipe, we'll make a wooden-looking platform continually animate, moving upwards
and downwards. This can be achieved with a single, 3-frame, animation clip (starting at top,
position at bottom, top position again).

http://docs.unity3d.com/Manual/AnimationEditorGuide.html
http://docs.unity3d.com/Manual/AnimationEditorGuide.html

2D Animation

130

Getting ready
This recipe builds on the previous one, so make a copy of that project, and work on the copy
for this recipe.

How to do it...
To create a continually moving animated platform, follow these steps:

1. Drag an instance of the sprite platformWoodBlocks from the Project | Sprites folder
into the scene. Position this GameObject at (-4, -5, 0), so that these wood blocks are
neatly to left, and slightly below, the wall blocks platform.

2. Add a Box Collider 2D component to GameObject platformWoodBlocks so that the
player's character can stand on this platform too. Choose menu: Add Component |
Physics 2D | Box Collider 2D.

3. Create a new folder named Animations, in which to store the animation clip and
controller we'll create next.

4. Ensuring GameObject platformWoodBlocks is still selected in the Hierarchy, open an
Animation panel, and ensure it is in Dope Sheet view (this is the default).

5. Click the empty dropdown menu in the Animation panel (next to the greyed out word
'Samples'), and choose menu item [Create New Clip].

6. Save the new clip in your Animations folder, naming it
'platform-wood-moving-up-down'.

7. Click button Add Curve, and chose Transform and the click the '+' plus-sign by
Position. We are now recording changes to the (X, Y, Z) position of GameObject
platformWoodBlocks in this animation clip.

8. You should now see 2 'keyframes' at 0.0 and at 1.0. These are indicated by diamonds
in the Timeline area in the right-hand-section of the Animation panel.

9. We need 3 keyframes, with the new one at 2:00 seconds. Click at 2:00 in the
Timeline along the top of the Animation panel, so that the red line for the current
playhead time is at time 2:00. Then click diamond+ button to create a new keyframe
at the current playhead time:

Chapter 3

131

10. The first and third keyframes are fine – they record the current height of the wood
platform at Y= -5. We need to make the middle keyframe record the height of the
platform at the top of its motion, and Unity in-betweening will do all the rest of the
animation work for us. Select the middle keyframe (at time 1:00), by clicking on either
diamond at time 1:00 (they should both turn blue, and the red playhead vertical line
should move to 1:00, to indicate the middle keyframe is being edited).

11. Now in the Inspector change the Y position of the platform to 0. You should see that
all three X, Y, Z values have a red background in the Inspector – this is to inform you
that the values of the Transform component are being recorded in the animation clip.

12. Save and run your scene. The wooden platform should now be animating continuously,
moving smoothly up and down the positions we setup.

How it works...
You have added an animation to GameObject platformWoodBlocks. This animation contains
three keyframes. A keyframe represents the values of properties of the object at a point in
time. The first keyframe stores a Y-value of -4, the second keyframe a Y-value of 0, and the
final keyframe -4 again. Unity calculates all the in-between values for us, and the result is a
smooth animation of the Y-position of the platform.

Note: If we wanted to duplicate the moving platform, first we'd need to
create a new, empty GameObject named movingBlockParent, and then
parent platformWoodBlocks to this GameObject. Duplicating GameObject
movingBlockParent would then allow us to create more moving blocks in our
scene. If we simply duplicated platformWoodBlocks directly, then when the
scene runs each duplicate would be animated back to the location of the
original animation frames (that is, all copies would be positioned and moving
in the original location).

Making a platform start falling once
stepped-on using a Trigger to move
animation from one state to another

In many cases we don't wish an animation to begin until some condition has been met, or
some event occurred. In these cases a good way to organize the Animator Controller is to have
two animation states (clips) and a Trigger on the Transition between the clips. We use code
to detect when we wish the animation to start playing, and at that time we send the Trigger
message to the Animation Controller, causing the transition to start.

2D Animation

132

In this recipe we'll create a water platform block in our 2D platform game; such blocks will
begin to slowly fall down the screen as soon as they have been stepped on, and so the player
must keep on moving otherwise they'll fall down the screen with the blocks too! It looks as
shown in the following screenshot:

Getting ready
This recipe builds on the previous one, so make a copy of that project, and work on the copy
for this recipe.

How to do it...
To construct an animation that only plays once a Trigger has been received, follow these steps:

1. In the Hierarchy create an Empty GameObject named water-block-container,
positioned at (2.5, -4, 0). This empty GameObject will allow us to make
duplicates of animated Water Blocks that will animate relative to their parent
GameObject position.

2. Drag an instance of the sprite Water Block from the Project | Sprites folder into the
scene and child it to GameObject water-block-container. Ensure the position of your
new child GameObject Water Block is (0, 0, 0), so that it appears neatly to right of
the wall blocks platform, as shown in the following screenshot:

3. Add a Box Collider 2D component to child GameObject Water Block, and set the
layer of this GameObject to Ground, so that the player's character can stand and
jump on this water block platform.

Chapter 3

133

4. Ensuring child GameObject Water Block is selected in the Hierarchy, open an
Animation panel, then create a new clip named platform-water-up. saving it in
your Animations folder.

5. Click button Add Curve, and chose Transform and Position.

6. Delete the second keyframe at time 1:00. You have now completed the creation of
the water block up animation clip.

7. Create a second Animation clip, named platform-water-down. Again, click button
Add Curve, and chose Transform and Position, and delete the second keyframe at
time 1:00.

8. With the first keyframe at time 0:00 selected, set the Y-value of the GameObjects
Transform Position to -5. You have now completed the creation of the water block
down animation clip, so you can click the red record button to stop recording.

9. You may have noticed that as well as the up/down Animation Clips that you created,
another file was created in your Animations folder, an Animator Controller named
Water Block. Select this file and open the Animator panel, to see and edit the State
Machine diagram:

10. Currently, although we created 2 animation clips (states), only the Up state is ever
active. This is because when the scene begins (Entry) the object will immediately go
in state platform-water-up, but since there are no transition arrows from this state to
platform-water-down, then at present the Water Block GameObject will always be in
its Up state.

11. Ensure state platform-water-up is selected (it will have a blue border around it),
and create a Transition (arrow) to state platform-water-down, by choosing Make
Transition from the mouse-right-click menu.

12. If you run the scene now, the default Transition settings are that after 0.9 seconds
the Water Blocks will transition into their Down state. We don't want this – we only
want them to animate downwards after the player has walked onto them. So create a
Trigger named Fall, by choosing the Parameters tab in the Animator panel, clicking
the plus '+' button and selecting Trigger, and then selecting Fall.

2D Animation

134

13. Do the following to create our Trigger:

 � In the Animator panel select the Transition

 � In the Inspector panel uncheck the Has Exit Time option

 � In the Inspector panel drag the Transition end time to 2:00 seconds (so the
Water Block slowly Transitions to its Down state over a period of 2 seconds)

 � In the Inspector panel click the plus '+' button to add a Condition, which
should automatically suggest the only possible condition parameter, which is
our Trigger Fall.

14. We now need to add a collider trigger just above the Water Block, and add C# script
behavior to send the Animator Controller Trigger when the player enters the collider.
Ensuring child GameObject Water Block is selected, add a (second) 2D Box Collider,
with a Y-Offset of 1, and tick its Is Trigger checkbox:

Chapter 3

135

15. Add an instance of C# script class WaterBlock as a component to your Water Block
child GameObject:
using UnityEngine;
using System.Collections;

public class WaterBlock : MonoBehaviour {
 private Animator animatorController;

 void Start(){
 animatorController = GetComponent<Animator>();
 }

 void OnTriggerEnter2D(Collider2D hit){
 if(hit.CompareTag("Player")){
 animatorController.SetTrigger("Fall");
 }
 }
}

16. Make 6 more copies of GameObject water-block-container, with X positions
increasing by 1 each time, that is, 3.5, 4.5, 5.5, and so on.

17. Run the scene, and as the player's character runs across each water block they will
start falling down, so he had better keep running!

How it works...
You created a two-state Animator Controller state machine. Each state was an Animation
Clip. You created a Transition from the Water Block Up state to its Down state that will
take place when the Animator Controller received a Fall Trigger message. You created a Box
Collider 2D with a Trigger, so that scripted component WaterBlock could be detected when
the player (tagged Player) enters its collider, and at that point send the Fall Trigger message
to make the Water Block GameObject start gently Transitioning into its Down state further
down the screen.

Learn more about the Animator Controllers on the Unity Manual web pages at http://docs.
unity3d.com/Manual/class-AnimatorController.html.

http://docs.unity3d.com/Manual/class-AnimatorController.html
http://docs.unity3d.com/Manual/class-AnimatorController.html

2D Animation

136

Creating animation clips from sprite sheet
sequences

The traditional method of animation involved hand-drawing many images, each slightly
different, which displayed quickly frame-by-frame to give the appearance of movement. For
computer game animation, the term Sprite Sheet is given to the image file that contains one
or more sequences of sprite frames. Unity provides tools to breakup individual sprite images
in large sprite sheet files, so that individual frames, or sub-sequences of frames can be used
to create Animation Clips that can become States in Animator Controller State Machines.
In this recipe, we'll import and break up an open source monster sprite sheet into three
animation clips for Idle, Attack, and Death that looks as shown:

Getting ready
For all the recipes in this chapter, we have prepared the sprite images you need in folder
1362_03_05. Many thanks to Rosswet Mobile for making these sprites available as Open
Source at: http://www.rosswet.com/wp/?p=156.

How to do it...
To create an animation from a sprite sheet of frame-by-frame animation images, follow
these steps:

1. Create a new Unity 2D project.

2. Import the provided image monster1.

3. With image monster1 selected in the Project panel, change its Sprite mode to
Multiple in the Inspector, then open the Sprite Editor panel by clicking button
Sprite Editor.

4. In the Sprite Editor open the Slice dropdown dialog, set the Type to Grid, set the grid
Pixel Size to 64x64, and then click the Slice button. Finally, click the Apply button in
the bar at the top right of the Sprite Editor panel):

http://www.rosswet.com/wp/?p=156

Chapter 3

137

5. In the Project panel you can now click the expand triangle button center-right on the
sprite, and you'll see all the different child frames for this sprite.

6. Create a folder named Animations.

7. In your new folder, create an Animator Controller named monster-animator.

8. In the scene create a new Empty GameObject named monster1 (at position 0, 0, 0),
and drag your monster-animator into this GameObject.

9. With GameObject monster1 selected in the Hierarchy, open up the Animation panel,
and create a new Animation Clip named Idle.

2D Animation

138

10. Select image monster1 in the Project panel (in its expanded view), and select and
drag the first 5 frames (frames 0-4) into the Animation panel. Change the sample
rate to 12 (since this animation was created to run at 12-frames per second).

11. If you look at the State Chart for monster-animator, you'll see it has a default state
(clip) named monster-idle.

12. When you run your scene you should now see the monster1 GameObject animating
in its monster-idle state. You may wish to make the Main Camera size a bit smaller,
since these are quite small sprites.

How it works...
Unity's Sprite Editor knows about sprite sheets, and once the correct grid size has been
entered it treats the items in each grid square inside the sprite sheet image as an individual
image, or frame, of the animation. You selected sub-sequences of sprite animation frames
and added them into several Animation Clips. You had added an Animation Controller
to your GameObject, and so each Animation Clip appears as a state in the Animation
Controller State Machine.

You can now repeat the process, creating an Animation Clip monster-attack with frames
8-12, and a third clip monster-death with frames 15-21. You would then create Triggers and
Transitions to make the monster GameObject transition into the appropriate states as the
game is played.

Learn more about the Unity Sprite Editor from the Unity video tutorials at https://
unity3d.com/learn/tutorials/modules/beginner/2d/sprite-editor.

https://unity3d.com/learn/tutorials/modules/beginner/2d/sprite-editor
https://unity3d.com/learn/tutorials/modules/beginner/2d/sprite-editor

Chapter 3

139

Conclusion
In this chapter, we have introduced recipes demonstrating the animation system for 2D
game elements. The bean-man 2D character is from the Unity 2D Platformer, which you can
download yourself from the Unity asset store. That project is a good place to see lots more
examples of 2D game and animation techniques (www.assetstore.unity3d.com/
en/#!/content/11228).

Here are some links for useful resources and sources of information to explore these
topics further:

 f Unity 2D Platformer (where the BeanMan character came from):

https://www.assetstore.unity3d.com/en/#!/content/11228

 f The platform sprites are from Daniel Cook's Planet Cute game resources:
http://www.lostgarden.com/2007/05/dancs-miraculously-flexible-
game.html

 f Creating a basic 2D platformer game:
https://www.unity3d.com/learn/tutorials/modules/beginner/live-
training-archive/creating-a-basic-platformer-game

 f Hat Catch 2D game tutorial:
https://www.unity3d.com/learn/tutorials/modules/beginner/live-
training-archive/2d-catch-game-pt1

 f Unity games from a 2D perspective video:
https://www.unity3d.com/learn/tutorials/modules/beginner/live-
training-archive/introduction-to-unity-via-2d

 f A fantastic set of modular 2D characters with a free Creative Commons license from
'Kenny'. These assets would be perfect for animating body parts in a similar way to
the bean-man example in this chapter and in the Unity 2D platformer demo:
http://kenney.nl/assets/modular-characters

www.assetstore.unity3d.com/en/#!/content/11228
www.assetstore.unity3d.com/en/#!/content/11228
https://www.assetstore.unity3d.com/en/#!/content/11228
http://www.lostgarden.com/2007/05/dancs-miraculously-flexible-game.html
http://www.lostgarden.com/2007/05/dancs-miraculously-flexible-game.html
https://www.unity3d.com/learn/tutorials/modules/beginner/live-training-archive/creating-a-basic-platformer-game
https://www.unity3d.com/learn/tutorials/modules/beginner/live-training-archive/creating-a-basic-platformer-game
https://www.unity3d.com/learn/tutorials/modules/beginner/live-training-archive/2d-catch-game-pt1
https://www.unity3d.com/learn/tutorials/modules/beginner/live-training-archive/2d-catch-game-pt1
https://www.unity3d.com/learn/tutorials/modules/beginner/live-training-archive/introduction-to-unity-via-2d
https://www.unity3d.com/learn/tutorials/modules/beginner/live-training-archive/introduction-to-unity-via-2d
http://kenney.nl/assets/modular-characters

141

4
Creating Maps and

Materials

In this chapter, we will cover the following topics:

 f Creating a basic material with Standard Shader (Specular setup)

 f Adapting a basic material from Specular setup to Metallic

 f Applying Normal maps to a material

 f Adding Transparency and Emission maps to a material

 f Highlighting materials at mouse-over

 f Adding Detail maps to a material

 f Fading the transparency of a material

 f Playing videos inside a scene

Introduction
Unity 5 introduces in new Physically-Based Shaders. Physically-Based Rendering is a
technique that simulates the appearance of materials based on how the light reacts with that
material (more specifically, the matter from which that material is made) in the real world.
Such a technique allows for more realistic and consistent materials. So, your creations in
Unity should look better than ever. Creating materials in Unity has also become more efficient
now. Once you have chosen between the available workflows (Metallic or Specular setup;
we'll get back to that later), there is no longer the need to browse the drop-down menus in
search of specific features, as Unity optimizes the shader for the created material, removing
unnecessary code for unused properties once the material has been set up and the texture
maps have been assigned.

Creating Maps and Materials

142

For a deep understanding of Physically-Based Rendering, we recommend you to take a look at
The Comprehensive PBR Guide, written by Wes McDermott from Allegorithmic, freely available
in two volumes at http://www.allegorithmic.com/pbr-guide. Allegorithmic's guide
contains invaluable information on PBR theory and techniques, having been a fundamental
reference for this chapter. A great resource that we'd recommend you take a look at is Mastering
Physically Based Shading in Unity 5 by Renaldas Zioma (Unity), Erland Körner (Unity), and Wes
McDermott (Allegorithmic), available at http://www.slideshare.net/RenaldasZioma/
unite2014-mastering-physically-based-shading-in-unity-5.

Another resource is Physically Based Shading in Unity by Aras Pranckevičius
(Unity), available at http://aras-p.info/texts/files/201403-GDC_
UnityPhysicallyBasedShading_notes.pdf.

Creating and saving texture maps
The visual aspects of a material can be modified through the use of textures. In order
to create and edit image files, you will need an image editor such as Adobe Photoshop
(the industry standard, and has its native format supported by Unity), GIMP, and so on. In
order to follow the recipes in this chapter, it's strongly recommended that you have access
to a few pieces of software like these.

When saving texture maps, especially the ones that have an Alpha Channel, you might want
to choose an adequate file format. PSD, Photoshop's native format, is practical for preserving
the original artwork in many layers. The PNG format is also a great option, but please note
that Photoshop doesn't handle PNG's Alpha channel independently of the transparency,
possibly compromising the material's appearance. Also, PNG files don't support layers. For
this chapter, we will often use the TIF format for three main reasons: (a) it's open to those not
using Photoshop; (b) it uses layers; (c) it preserves the Alpha Channel information. The file size
is significantly greater than in PSDs and PNGs, so feel free to save your work as PSDs (if you
have Photoshop) or PNGs (if you don't need layers and, if using Photoshop, Alpha Channels).

Finally, a word of advice - although it's possible to manually create texture maps for our
materials by using the traditional image editing software, new tools such as Allegorthmic's
Substance Painter and Bitmap2Material make this work much more efficient, complete, and
intuitive, complementing the traditional texture-making process or replacing it altogether - in
a similar way to what zBrush and Mudbox did for 3D modeling. For design professionals, we
strongly recommend at least trying such tools. Note, however, that products from Allegorithmic
won't make use of Unity's Standard Shader, relying on the substance files (which are natively
supported by Unity).

http://www.allegorithmic.com/pbr-guide
http://www.slideshare.net/RenaldasZioma/unite2014-mastering-physically-based-shading-in-unity-5
http://www.slideshare.net/RenaldasZioma/unite2014-mastering-physically-based-shading-in-unity-5
http://aras-p.info/texts/files/201403-GDC_UnityPhysicallyBasedShading_notes.pdf
http://aras-p.info/texts/files/201403-GDC_UnityPhysicallyBasedShading_notes.pdf

Chapter 4

143

The big picture
To understand the new Standard Shaders, it's a good idea to know the workflows, their
properties, and how they affect the material's appearance. There are, however, many
possible ways to work with materials - texture map requirements, for instance, might change
from engine to engine, or from one tool to another. Presently, Unity supports two different
workflows: one based on Specular, and another based on Metallic values. Although both
workflows share similar properties (such as Normal, Height, Occlusion, and Emission), they
differ in the way the diffuse color and reflectance properties are set up.

Specular workflow
Unity's Standard Shader (Specular setup) uses Albedo and Specular/Smoothness maps,
combining them to create some of the material's aspect—mainly its color and reflectance
qualities. The following shows the difference between Albedo and Smoothness maps:

 f Albedo: This is the material's diffused color. Plainly and simply, this is how you
usually describe the appearance of the material (the British flag is red, white and
blue; Ferrari's logo is a black horse in a yellow setting; some sunglasses' lenses are
semi-transparent gradients, and more). This description, however, can be deceptive.
Purely metallic objects (such as aluminum, chrome, gold, and others) should have
black as their diffuse color. Their colors, as we perceive them, have originated from
their specular channel. Non-metallic objects (plastic, wood, and even painted or
rusted metal), on the other hand, do have very distinct diffuse colors. Texture maps
for the Albedo property feature RGB channels for colors and (optionally) an Alpha
Channel for transparency.

 f Specular/Smoothness: This refers to the shininess of the material. Texture maps
make use of RGB channels for specular color (which informs hue and intensity), and
Alpha Channel for smoothness/gloss (dark values for less shiny surfaces and blurred
reflections; light/white values for shiny, mirror-like appearance). It is important to note
that non-metallic objects feature neutral, very dark specular colors (with plastic, for
instance, you should work with a grey value around 59). Metallic objects, on the other
hand, feature very light values, and are also a bit yellowish in hue.

Creating Maps and Materials

144

To illustrate such concepts, we have created a battery object (shown below), featuring brushed
metal caps and a plastic body. Observe how each map contributes to the final result:

The metallic workflow
Unity's default Standard Shader combines Albedo and Metallic/Glossiness maps to create the
color and reflectance qualities of the material. The following are the differences:

 f Albedo: As in the Specular workflow, this is the material's diffuse color; how you
would describe the material. However, Albedo maps for the Metallic workflow should
be configured in a slightly different way than ones for Specular workflow. This time
around, the perceived diffuse color of metallic materials (grey for iron, yellow/
orange for golden, and so on) have to be present in the Albedo map. Again, Albedo
maps feature RGB channels for the colors and (optionally) an Alpha channel for
transparency.

 f Metallic/Smoothness: This refers to how metallic the material looks. Metallic texture
maps make use of the Red channel for the Metallic value (black for non-metallic and
white for metallic materials that are not painted or rusted) and the Alpha Channel
for smoothness (in a similar way to the Specular workflow). Please note that Metallic
maps do not include any information on hue, and in these cases the yellow-ish nature
of the metallic gloss should be applied to the Albedo map.

To reproduce the battery that illustrated the Specular workflow by using the Metallic workflow,
maps would have to be recreated as follows:

Chapter 4

145

You might have noticed that we've used white to convey a metallic object.
Technically, since only the Red channel is relevant, we could have used
red (R: 255, G: 0, B: 0), yellow (R: 255, G: 255, B: 0) or, for that matter,
any color that has a red value of 255.

Other material properties
It's also worth mentioning that Unity's Standard Shaders support other maps such as:

 f Normal maps: The normal map adds detailed bumpiness into the material,
simulating a more complex geometry. For instance, the internal ring on the
positive (top) node of the battery that illustrated shader workflows is not modeled
in the 3D object's geometry, but rather created through a simple normal map.

 f Occlusion maps: A greyscale map is used to simulate the dark sections of an
object under ambient light. Usually, it is used to emphasize joints, creases,
and other details of geometry.

 f Height maps: These add a displacement effect, giving the impression of depth
without the need for complex geometry.

 f Emission maps: These add color emitted by the material, as if self-illuminated,
such as fluorescent surfaces or LCDs. Texture maps for Emission feature RGB
channels for color.

Unity samples and documentation
Before you start, it might be a good idea to read Unity's documentation on textures. It can
be found online at http://unity3d.com/support/documentation/Manual/
Textures.html.

Finally, Unity has put together a great resource for those looking for some pointers regarding
how to set up maps for a variety of materials: the Shader Calibration Scene, which can be
downloaded (for free) from the Unity Asset Store. It is a fantastic collection, featuring sample
materials (both Metallic and Specular setup) for wood, metal, rubber, plastic, glass, skin,
mud, and much more.

Creating a basic material with Standard
Shader (Specular setup)

In this recipe, we will learn how to create a basic material using the new Standard Shader
(Specular Setup), an Albedo map, and a Specular/Smoothness map. The material will feature
both metallic and non-metallic parts, with various smoothness levels.

http://unity3d.com/support/documentation/Manual/Textures.html
http://unity3d.com/support/documentation/Manual/Textures.html

Creating Maps and Materials

146

Getting ready
Two files have been prepared to support this recipe: a 3D model (in FBX format) of a battery,
and an UVW template texture (in PNG format) to guide us when creating the diffuse texture
map. 3D models and UVW templates can be made with 3D modeling software, such as 3DS
MAX, Maya, or Blender. All necessary files are available in the 1362_04_01 folder.

How to do it...
To create a basic material, follow these steps:

1. Import the battery.FBX and uvw_template.png files to your project.

2. Place the battery model in the scene by dragging it from the Assets folder, in
the Project view, to the Hierarchy view. Select it on the Hierarchy view and make
sure, via the Transform component on the Inspector view, that it is positioned at
X: 0, Y: 0, Z: 0.

3. Now, let's create a Specular/Smoothness map for our object. Open the image file
called uvw_template.png in your image editor (we'll use Adobe Photoshop to
illustrate the next steps). Note that the image file has only a single layer, mostly
transparent, containing the UVW mapping templates that we will use as guidelines
for our specular map.

4. Create a new layer and place it beneath the one with the guidelines. Fill the new
layer with dark gray (R: 56, G: 56, B: 56). The guidelines will be visible at the top
of the solid black fill:

Chapter 4

147

5. Create a new layer and select the upper section of the image (the one with the
circles). Then, fill that area with a slightly hued light gray (R: 196, G: 199, B: 199):

The RGB values for our specular map are not arbitrary: Physically-Based
Shading takes out most of the guesswork from the mapping process, replacing
it with the research for references. In our case, we have used colors based on
the reflectance values of iron (the slightly hued light gray) and plastic (the dark
gray). Check out the chapter's conclusion for a list of references.

6. Use the text elements in white to add a brand, size, and positive/negative indicators
to the battery body. Then, hide the guidelines layer.

7. Select all your layers and organize them into a group (in Photoshop, this can be
done by clicking on the drop-down menu in the Layers window and navigating
to Window | New Group from Layers…). Name the new group Specular:

Creating Maps and Materials

148

8. Duplicate the Specular group (in the Layers window, right-click on the group's
name and select Duplicate Group…). Name the duplicated group Smoothness.

9. Hide the Smoothness group. Then, expand the Specular group and hide all
text layers:

10. Unhide the Smoothness group, and hide the Specular group. Select the dark gray
layer. Then, make an area selection around the upper region of the battery body, and
fill it with light gray (R: 220, G: 220, B: 220). Rescale and rearrange the Text layers
if needed:

11. Duplicate the layer that contains the gray fill for the upper section of the image
(the one that went over the circles).

Chapter 4

149

12. To add a brushed quality to this material, add a Noise filter to the duplicated layer
(in Photoshop, this can be done by navigating to Filter | Noise | Add Noise...). Use
50% as the Amount and set Monochromatic to true. Then, apply a Motion Blur
filter (Filter | Blur | Motion Blur...) using 30 Pixels as the Distance.

13. Duplicate the Smoothness group. Then, select the duplicated group and merge it
into a single layer (on the Layers window, right-click on the group's name and select
Merge Group).

14. Select the merged layer, use the CTRL + A key combination to select the entire
image, and copy it using the CTRL + C keys:

15. Hide the merged layer and the Smoothness group. Then, unhide the Specular group.

16. In your image editor, access the image channels window (in Photoshop, this can
be done by navigating to Window | Channels). Create a New Channel. This will
be our Alpha Channel.

17. Paste the image that you previously copied (from the merged layer) in to the
Alpha Channel. Then, set all channels as visible:

Creating Maps and Materials

150

18. Save your image in the Project's Assets folder as Battery_specular, either in
Photoshop format (PSD) or TIF format.

19. Now, let's work on the Albedo map. Save a copy of Battery_specular as
Battery_albedo. Then, from the Channels window, delete the Alpha Channel.

20. From the Layers window, hide the Smoothness copy merged layer, and unhide
the Smoothness group. Finally, expand the Smoothness group, and hide the
layer where the Noise filter was applied:

21. Change the color of the upper rectangle to black. Then, change the light gray area to
dark red (R: 204, G: 0, B: 0), and the dark gray to red (R: 255, G: 0, B: 0). Rename
the group Albedo and save the file:

Chapter 4

151

22. Go back to Unity and make sure that both files were imported. Then, from the Project
view, create a new Material. Name it Battery_MAT.

An easy way to create new materials is to access the Project view,
click on the Create drop-down menu, and choose Material.

23. Select Battery_MAT. From the Inspector view, change the Shader to Standard
(Specular setup), and make sure that the rendering mode is set to Opaque.

24. Set Battery_specular as the Specular map, and Battery_albedo as the
Albedo map for Battery_MAT.

25. Drag the Battery_MAT material from the Project view and drop it into the
battery object in the Hierarchy view:

26. Drag the Battery_MAT material from the Project view and, in the Hierarchy view,
drop it into the battery object:

How it works...
Ultimately, the visual aspect of the battery is a combination of three properties of its material:
Specular, Smoothness, and Albedo.

Creating Maps and Materials

152

To compose the dark red part of the plastic body, for instance, we have mixed the following:

 f The Specular map (RGB): Very dark grey specularity (for non-metallic appearance)

 f The Smoothness (the Alpha channel of the Specular map): Light gray
(for a glossy aspect)

 f The Albedo map: Dark red (for a dark red color)

The light red portion, on the other hand, combines the following:

 f The Specular map (RGB): That same dark grey specular

 f The Smoothness (the Alpha Channel of the Specular map): Dark gray (for a matte aspect)

 f The Albedo map: Red (for a red color)

Finally, the brushed metal used for the top and bottom covers combines the following:

 f The Specular map (RGB): Light grey (for a metallic aspect)

 f The Smoothness (the Alpha Channel of the Specular map): A blurred grey noise
pattern (for a brushed aspect)

 f The Albedo map: Black (for a red color)

Regarding how the image layers are structured, it's good practice to organize your layers
into groups named after the property that they are related to. As texture maps get more
diversified, it can be a good idea to keep a file that contains all the maps for quick
reference and consistency.

There's more...
A few things you should have in mind when working with Albedo maps are as follows.

Setting the texture type for an image file
Since image files can be used for several purposes within Unity (texture maps, GUI textures,
cursors, and more), it's a good idea to check if the right Texture Type is assigned to your file.
This can be done by selecting the image file in the Project view, and in the Inspector view by
using the drop-down menu to select the right Texture Type (in this case, Texture). Please
note that other settings can be adjusted, such as Wrap Mode, Filter Mode, and Maximum
Size. This last parameter is very useful if you want to keep your texture maps small in size for
your game, while still being able to edit them in full size.

Combining the map with color
When editing a material, the color picker to the right of the Albedo map slot, on the Inspector
view, can be used to select the material's color, in case there is no texture map. If a texture
map is being used, the selected color will be multiplied to the image, allowing variations on
the material's color hue.

Chapter 4

153

Adapting a basic material from Specular
setup to Metallic

For a better understanding of the differences between Metallic and Specular workflows, we
will modify the Albedo and Specular/Smoothness maps that are used on a Specular setup
material, in order to adapt them to the Metallic workflow. The material to be generated will
feature both metallic and non-metallic parts, with various smoothness levels.

Getting ready
For this recipe, we have prepared a Unity package containing a battery model and its original
material (made with Standard Shader—Specular setup). The package includes two image files
for the original Albedo and Specular/Smoothness maps which, throughout the recipe, should be
adapted for use with the Metallic setup. The package is available in the 1362_04_02 folder.

How to do it...
To create a basic material, follow these steps:

1. Import the battery_prefab Unity package into a new project.

2. From the Project view, select the battery_prefab element. Then, from Inspector,
access its material (named Battery_MAT) and change its Shader to Standard
(as opposed to its current shader—Standard (Specular setup).

3. From the Project view, find the Battery_specular map and rename it Battery_
metallic. Open it in your image editor (we'll use Adobe Photoshop to illustrate the
following steps).

Creating Maps and Materials

154

4. Find the layer group named Specular and rename it Metallic. Then, fill the light gray
layer (named Layer 2, in the Metallic group) with white (R: 255, G: 255, B: 255), and
the dark gray layer (named Layer 1, in the Metallic group) with black (R: 0, G: 0, B:
0). Save the file:

5. Go back to Unity. From the Inspector view, set the modified Battery_metallic map as
the Metallic map of the Battery_MAT material. Also, set None as the Albedo map for
that material. This will give you an idea of how the material is coming along:

6. Now, let's adjust the Albedo texture map. From the Project view, locate the Battery_
albedo map and open it in your image editor. Then, use the Paint Bucket tool to fill
the black area of Layer 2, in the Albedo group, with light gray (R: 196, G: 199, B: 199).
Save the file:

Chapter 4

155

7. Go back to Unity. From the Inspector view, set the modified Battery_albedo map as
the Albedo map of the Battery_MAT material.

Your material is ready, combining visual properties based on the different maps that
you have edited and assigned.

How it works...
The visual aspect of the battery is a combination of three properties of its material: Metallic,
Smoothness, and Albedo.

To compose the dark red part of the plastic body, for instance, we have mixed the following:

 f The Metallic map (RGB): Black (for a non-metallic appearance)

 f The Smoothness (the Alpha Channel of a Metallic map): Light gray
(for a glossy appearance)

 f The Albedo map: Dark red (for a dark red color)

Creating Maps and Materials

156

The light red portion, on the other hand, combines the following:

 f The Metallic map (RGB): Black

 f The Smoothness (the Alpha Channel of the Metallic map): dark gray (for a matte
appearance)

 f Albedo map: red (for a red color)

Finally, the brushed metal used for the top and bottom covers combines the following:

 f The Metallic map (RGB): white (for a metallic aspect)

 f The Smoothness (the Alpha Channel of the Metallic map): blurred grey noise pattern
(for a brushed appearance);

 f Albedo map: light grey (for an iron-like appearance)

Remember to organize your layers in to groups named after the property that they are related to.

Applying Normal maps to a material
Normal maps are generally used to simulate complex geometry that would be too expensive,
in terms of computer processing, to be actually represented by the 3D polygons during the
game's runtime. Oversimplifying, Normal maps fake complex geometry on low-definition 3D
meshes. These maps can be generated either by projecting high-definition 3D meshes onto
low-poly ones (a technique usually referred to as baking), or, as will be the case for this recipe,
from another texture map.

Getting ready
For this recipe, we will prepare two texture maps: the Heightmap and the Normal map. The
former will be made from simple shapes in an image editor. The latter will be automatically
processed from the Heightmap. Although there are a number of tools that can be used to
generate Normal maps (see the There is more section of this chapter for a list of resources),
we will use a free online tool, Windows and Mac compatible, to generate our texture.
Developed by Christian Petry, the NormalMap Online feature can be accessed at
http://cpetry.github.io/NormalMap-Online/.

To help you with this recipe, it's been provided a Unity package, containing a prefab made of
 a 3D object and its material; and also an UVW template texture (in PNG format) to guide you
when creating the diffuse texture map. All the files are in the 1362_04_03 folder.

http://cpetry.github.io/NormalMap-Online/

Chapter 4

157

How to do it...
To apply a Normal map to a material, follow these steps:

1. Import the 1362_04_03.unitypackage file to your project. Select the
batteryPrefab object from the Assets | 1362_04_03 folder, in the Project view.
After comparing it with some reference photos, inform yourself about the features that
should be reproduced by the Normal map: (A) a bumpy ring at the top; and (B) some
circular creases at the bottom, shown in the following image:

2. In an image editor, open uvw_template.png. Create a new layer, fill it with grey
(RGB: 128), and position it below the pre-existing layer as shown:

Creating Maps and Materials

158

3. On a separate layer, draw a white circle centered on the battery's top. Then, on
another layer, draw a black circle, centered on the battery's bottom, as shown below:

4. If you have used vector shapes to make the circles, rasterize their layers (in Adobe
Photoshop, right-click on the layer's name and select the Rasterize Layer option from
the context menu).

5. Blur the white circle (in Photoshop, this can be done by navigating to Filter | Blur |
Gaussian Blur...). Use 4,0 pixels as the Radius.

6. Hide the UVW template layer and save the image as Battery_height.png.

7. If you want to convert the Heightmap directly from Unity, import it to your project.
Select it from the Project view and, from the Inspector view, change its Texture
Type to Normal map. Check the Create from Grayscale option, adjust Bumpiness
and Filtering as you like, and click on Apply to save the changes:

Chapter 4

159

8. To convert your Heightmap externally, access the website at http://cpetry.
github.io/NormalMap-Online/. Then, drag the HEIGHT_battery.png
file to the appropriate image slot. Feel free to play with the Strength, Level and
Blur/Sharp parameters:

9. Save the resulting Normal map as Battery_normal.jpg and add it to your
Unity project.

10. In Unity, select Battery_normal from the Project view. Then, from the Inspector
view, change its Texture Type to Normal, leaving the Create from Grayscale box
unchecked. Click on Apply to save the changes:

http://cpetry.github.io/NormalMap-Online/
http://cpetry.github.io/NormalMap-Online/

Creating Maps and Materials

160

11. In the Project view, select batteryPrefab. Then, in the Inspector view, scroll down
to the Material component, and assign Battery_normal to the Normal Map slot.
To adjust its intensity and direction, change its value to -0.35:

How it works...
The Normal map was calculated from the grey values on the Heightmap, where the lighter
tones were interpreted as recesses (applied to the top of the battery), and the darker tones
as bulges (applied to the bottom). Since the desired output was actually the opposite, it was
necessary to adjust the Normal map to a negative value (-0.35). Another possible solution
to the issue would have been to redraw the Heightmap and switch the colors for the white
and black circles.

There's more...
If you wish to explore Normal mapping beyond the limitations of NormalMap Online, there is
an ever-growing list of full-featured software that can produce Normal maps (and much more).
Here are some resources that you might want to check out:

 f CrazyBump is a standalone tool for Windows and Mac, which is available at
http://www.crazybump.com

 f nDo is a Photoshop plugin by Quixel (Windows only), available at http://quixel.
se/ndo

http://www.crazybump.com
http://quixel.se/ndo
http://quixel.se/ndo

Chapter 4

161

 f GIMP normalmap Plugin, available for Windows only, is available at http://code.
google.com/p/gimp-normalmap/

 f NVIDIA Texture Tools for Adobe Photoshop, available for Windows only, is available at
http://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop

 f Bitmap2Material is an amazing texture generating tool from Allegorithmic, which is
available at http://www.allegorithmic.com/

Adding Transparency and Emission maps to
a material

The Emission property can be used to simulate a variety of self-illuminated objects, from
the LEDs of mobile displays to futuristic Tron suits. Transparency, on the other hand, can
make the diffuse color of a material more or less visible. In this recipe, you will learn how to
configure these properties to produce a toy's cardboard packaging that features a plastic case
and glow-in-the-dark text.

Getting ready
For this recipe, we have prepared a Unity package containing a prefab made of a 3D object,
its material, and its respective diffused texture map (in PNG format). All files are in the
1362_04_04 folder.

How to do it...
To add transparency and color emissions to a material, follow these steps:

1. Import TransparencyEmission.unitypackage to your project. Select the DIFF_
package texture from the Assets folder, in the Project view. Then, open it in your
image editor.

2. First, we will add transparency to the image by deleting the white areas around the
package (and the hang hole). Make a selection of those areas (in Photoshop, this can
be done with the Magic Wand Tool).

3. Make sure you unlock the Background layer by clicking on the lock icon, to the left
of the layer's name, as shown below:

http://code.google.com/p/gimp-normalmap/
http://code.google.com/p/gimp-normalmap/
http://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop
http://www.allegorithmic.com/

Creating Maps and Materials

162

4. Delete the previously-made selection (this can be done in Photoshop by pressing
the Delete key). The background of the image should be transparent, as shown below.
Save the file:

5. Back in Unity, in the Assets folder, expand the packagePrefab list and select
the PackageCard object. Now, in the Inspector view, scroll down to the Material
component and change its Rendering Mode to Cutout, and adjust its Alpha Cutoff
to 0.9:

Choosing Cutout means that your material can be either invisible or
fully visible, not allowing for semi-transparency. The Alpha Cutoff is
used to get rid of unwanted pixels around the transparent borders.

6. From the expanded packagePrefab, select the PackagePlastic object. In the
Inspector view, scroll down to the Material component and change its Rendering
Mode to Transparent. Then, use the Diffuse color picker to change the color's RGB
values to 56, and Alpha to 25. Also, change the Smoothness level to 0.9:

Chapter 4

163

7. Now that we have taken care of our transparency needs, we need to work on the
Emission map. From the Assets folder, duplicate the DIFF_package texture,
rename it EMI_package, and open it in your image editor.

8. Select all the characters from the Ms. Laser inscription and the green star
(in Photoshop, this can be done with the Magic Wand tool, keeping the Shift
key pressed while selecting multiple areas).

9. Copy and paste your selection into a new layer. Then, select it and apply a Noise filter
to it (in Photoshop, this can be done by navigating to Filter | Noise | Add Noise...).
Use 50% as the value.

10. Create a new layer and, using a tool such as the Paint Bucket, fill it with black
(R: 0, G: 0, B: 0). Place this black layer beneath the one with the colored elements.

11. Flatten your image (in Photoshop this can be done by navigating to Layer | Flatten
Image) and save your file:

Creating Maps and Materials

164

12. Back in Unity, in the Assets folder, expand packagePrefab and select the
PackageCard object. Now, in the Inspector view, scroll down to the Material
component and assign the EMI_package texture to its Emission slot. Then, change
the Emission color slot to white (R: 255; G: 255; B: 255), and turn down its intensity to
0.25, as shown in the following screenshot. Also, change its GI option to None, so that
its glow won't be added to the Lightmaps or influence the illumination in real time:

13. Place an instance of the packagePrefab in your scene and check out the results.
Your material is ready:

How it works...
Unity is able to read four channels of a texture map: R (Red), G (Green), B (Blue) and A (Alpha).
When set to Transparent or Cutout, the Alpha channel of the diffuse texture map sets the
transparency of the material according to each pixel's brightness level (the Cutout mode will
not render semi-transparency—only fully visible or invisible pixels). You might have noticed
that we didn't add an Alpha channel—this is because Photoshop exports the PNG's Alpha
map, based on its transparency. To help you visualize the Alpha map, the 1362_04_04 folder

Chapter 4

165

contains a DIFF_packageFinal.TIF file featuring an Alpha map that works exactly in the
same way as the PNG file that we have generated:

Regarding the Emission texture map, Unity assigns its RGB colors to the material, combining
them with the appropriate color selection slot, and also allowing adjustments to the intensity
of that Emission.

There's more...
Let look at a little more information on Transparency and Emission.

Using texture maps with Transparent Mode
Please note that you can use a bitmap texture for the Diffuse map in the Transparent
render mode. In this case, RGB values will be interpreted as the Diffuse color, while the
Alpha will be used to determine that pixel's transparency (in this case, semi-transparent
materials are allowed).

Avoiding issues with the semi-transparent objects
You might have noticed that the plastic case was made from two objects (PackagePlastic
and innerPlastic). This was done to avoid z-sorting problems, where faces are rendered in
front of other geometry when they should be behind it. Having multiple meshes instead of a
single one allows these faces to be correctly sorted for rendering. Materials in the Cutout
mode are not affected by this problem, though.

Emitting light over other objects
The Emission value can be used to calculate the material's light projection over other objects
when using Lightmaps.

Creating Maps and Materials

166

Highlighting materials at mouse over
Changing the color of an object at runtime can be a very effective way of letting players know
that they can interact with it. This is very useful in a number of game genres, such as puzzles
and point-and-click adventures, and it can also be used to create 3D user interfaces.

Getting ready
For this recipe, we'll use objects created directly in Unity. Alternatively, you can use any 3D
model you like.

How to do it...
To highlight a material at mouse-over, follow these steps:

1. Create a new 3D project, and add a Cube to the scene (from the Hierarchy view,
navigate to Create | 3D Object | Cube).

2. From the Project view, click the Create drop-down menu and choose Material.
Name it HighlightMaterial.

3. Select HighlightMaterial, and, from the Inspector view, change its Albedo color
to gray (R: 135, G: 135, B: 135), its Emission intensity to 1, as shown in the
screenshot below, and it's Emission color to R: 1, G: 1, B: 1:

4. Assign HighlightMaterial to the Cube that you previously created.

5. From the Project view, click on the Create drop-down menu and choose
C# Script. Rename it HighlightObject and open it in your editor.

6. Replace everything with the following code:
using UnityEngine;
using System.Collections;
public class HighlightObject : MonoBehaviour{
 private Color initialColor;
 public bool noEmissionAtStart = true;
 public Color highlightColor = Color.red;
 public Color mousedownColor = Color.green;

 private bool mouseon = false;

Chapter 4

167

 private Renderer myRenderer;

 void Start() {
 myRenderer = GetComponent<Renderer>();
 if (noEmissionAtStart)
 initialColor = Color.black;
 else
 initialColor = myRenderer.material.GetColor("_EmissionColor");
 }

 void OnMouseEnter(){
 mouseon = true;
 myRenderer.material.SetColor("_
EmissionColor", highlightColor);
 }

 void OnMouseExit(){
 mouseon = false;
 myRenderer.material.SetColor("_EmissionColor",initialColor);
 }

 void OnMouseDown(){
 myRenderer.material.SetColor("_EmissionColor",
mousedownColor);
 }

 void OnMouseUp(){
 if (mouseon)
 myRenderer.material.SetColor("_EmissionColor",
highlightColor);
 else
 myRenderer.material.SetColor("_EmissionColor", initialColor);
 }
}

7. Save your script and attach it to the Cube.

8. Select the Cube, and, in the Inspector view, set the Highlight Color and Mousedown
Color values to any colors that you would like:

Creating Maps and Materials

168

9. If you are using the script with your own imported 3D mesh, please make
sure you add a Collider component to your object.

10. Test the scene. The Cube will be highlighted red when the mouse is over it
(and green when clicked on).

How it works...
The cube is automatically sent the mouse enter/exit/down/up events as the user moves the
mouse pointer over and away from the part of the screen where the cube is visible. Our script
adds a behavior to the cube when these events are detected. The Start() method gets a
reference to the Renderer component of the GameObject that the script has been added
to, and stores it in the variable myRenderer (note that 'renderer' already has a meaning in
Unity so it is not appropriate as a private variable name for this script). The Boolean variable
called mouseon records whether or not the mouse pointer is currently over the object. When
the mouse button is released, we use the mouseon variable to decide whether to change the
cube back to its initial color (mouseon FALSE, so the mouse pointer is away from the cube), or
back to its highlight color (mouseon TRUE, so the mouse pointer is over the cube).

The reason we needed to change the material's original Emission color to ultra, dark gray
is that leaving it black would have caused Unity to optimize the Shader by removing the
Emission property from the material. Our script wouldn't have worked if this had happened.

There's more...
You can achieve other interesting results by changing the other properties of your material
(by changing the _EmissionColor script to _Color or "_SpecularColor, for instance).
For a full list of properties, select your material, and, in the Inspector view, click on the Edit
button, at the side of the Shader drop-down menu.

Adding Detail maps to a material
When creating a large object, there is not only the desire to texture it as a whole, but also to
add details that can make it look better at closer distances. To overcome the need for gigantic
texture maps, the use of Detail maps can make a real difference. In this recipe, we will add
Detail maps to a rocket toy by applying a Detail mask and a Detail Normal map. In our case,
we want to add a textured quality (and a stripe pattern) to the green plastic, except in the
region where there is a battery compartment and the toy's logo:

Chapter 4

169

Getting ready
For this recipe, we have prepared a Unity package, containing the prefab for a rocket toy.
The prefab includes the 3D model and a material, featuring a Diffuse map and a Normal
map (made from a Heightmap). The file can be found in the 1362_04_06 folder.

How to do it...
To add the Detail maps to your object, follow these steps:

1. Import the rocket.unitypackage file into your project. Then, select the
prefab named rocketToy from the Assets folder, in the Project view, and
place it in your scene.

2. From the Hierarchy view, expand the rocketToy GameObject and select its
child called rocketLevel1. Then, scroll down the Inspector view to the Material
component. Observe that it uses the DIFF_ship texture as the Diffuse map.
Duplicate this file and rename the new copy COPY_ship.

3. Open COPY_ship in your image editor. Select all the solid green pixels around
the logo and battery compartment (in Photoshop, this can be done with the Magic
Wand tool, keeping the Shift key pressed while selecting multiple areas):

Creating Maps and Materials

170

4. Keeping your selection active, access the image Channels window (in Photoshop,
this can be done by navigating to Window | Channels). Click on New Channel.
This will be our Alpha channel:

5. Hide the Red, Green and Blue channels. Select the Alpha channel and paint the
selection white. Then, select the area of the battery compartment and paint it grey
(R, G and B: 100):

6. Save it in the TIFF format as MASK_ship.TIF, in the Assets folder. Make sure that
you include Alpha Channels:

7. Now that we have the mask, let's create a diffuse map for our detail. In your image
editor, create a new image with the following dimensions: width: 64, and height: 64.

Chapter 4

171

8. Fill the new image with grey (R, G and B: 128). Then, use shapes or rectangular fills to
create a dark grey (R, G, and B: 100) horizontal line that is about 16 pixels tall:

9. Save the image as DIFF_detail.PNG in the Assets folder.

10. Create a new 64 x 64 image. Use a Gradient tool to create a black and white Radial
Gradient (in Photoshop, this can be done with the Gradient Tool in Radial mode):

11. Save the image as HEIGHT_detail.PNG in the Assets folder.

12. Go back to Unity. From the Assets folder, select HEIGHT_detail. Then, from
the Inspector view, change its Texture Type to Normal map, check the Create
from Grayscale option, adjust Bumpiness to 0.25, and set Filtering to smooth.
Click on Apply to save the changes:

13. From the Hierarchy view, expand the rocketToy GameObject and select its
child called rocketLevel1. Then, scroll down the Inspector view to the Material
component. Assign MASK_ship to the Detail Mask slot; DIFF_detail as
Secondary Maps | Detail Diffuse x 2; and HEIGHT_detail as Secondary Maps |
Normal Map. Also, turn the Normal Map intensity down to 0.6.

Creating Maps and Materials

172

14. In the Secondary Maps section, change the Tiling values to X: 200, and Y: 50. You
might notice that the pattern is not seamless. This is because we are using the
same UV Set from our Diffuse texture. However, the object has been assigned to
two different UV channels (back when it was being modeled). While UV channel 1
contains the mapping for our Diffuse map, UV channel 2 uses a basic cylindrical
mapping. We need to change the Secondary Maps section's UV Set from UV0 to
UV1. The Detail map for your material is ready:

How it works...
When in use, Secondary Maps are blended onto the material's primary Diffuse and Normal
maps (that's why our object is green even after the Detail Diffuse is applied: the grey
tones are superimposed on the original Diffuse texture). By using a Detail Mask, the artist
defines which areas of the object should be affected by Secondary Maps. This is great for
customization, and also for creating nuances (like the semi-bumped battery compartment
in our example).

Another helpful feature is the possibility of using a separate UV channel for Details maps
and Tiling. Besides adding variation to texture mapping, this allows us to paint the details
that can be perceived even at a very close distance by dramatically enhancing the visual
quality of our objects.

Chapter 4

173

Fading the transparency of a material
In this recipe, we will create an object that, once clicked, fades out and disappears. However,
the script will be flexible enough to allow us adjust the initial and final alpha values. Plus, we
will have the option of making the object self-destructible when turned invisible.

How to do it...
Follow these steps:

1. Add a Sphere to your scene by accessing the GameObject | 3D Object | Sphere
menu.

2. Select the Sphere and make sure it has a collider (if you are using a custom 3D
object, you might have to add a collider through the Components | Physics menu).

3. Create a new material. The easiest way to do that is to access the Project view,
click the Create drop-down menu, and choose Material.

4. Rename your new material. For this example, let's call it Fade_MAT.

5. Select your material. From the Inspector view, use the drop-down menu to change
its Rendering Mode to Fade:

The Fade rendering mode is specifically designed for situations like this.
Other rendering modes, such as Transparent, will fade turn the Albedo
color transparent, but not the specular highlights nor the reflections, in
which case the object will still be visible.

6. Apply the FadeMaterial to Sphere by dragging it from the Project view into the
Sphere Game Object name in the Hierarchy view.

7. From the Project view, click the Create drop down menu and choose C# Script.
Rename it as FadeMaterial and open it in your editor.

Creating Maps and Materials

174

8. Replace your script with the code below:
using UnityEngine;
using System.Collections;
public class FadeMaterial : MonoBehaviour {
 public float fadeDuration = 1.0f;
 public bool useMaterialAlpha = false;
 public float alphaStart = 1.0f;
 public float alphaEnd = 0.0f;
 public bool destroyInvisibleObject = true;
 private bool isFading = false;
 private float alphaDiff;
 private float startTime;
 private Renderer rend;
 private Color fadeColor;

 void Start () {
 rend = GetComponent<Renderer>();
 fadeColor = rend.material.color;

 if (!useMaterialAlpha) {
 fadeColor.a = alphaStart;
 } else {
 alphaStart = fadeColor.a;
 }

 rend.material.color = fadeColor;
 alphaDiff = alphaStart - alphaEnd;
 }

 void Update () {
 if(isFading){
 var elapsedTime = Time.time - startTime;

 if(elapsedTime <= fadeDuration){
 var fadeProgress = elapsedTime / fadeDuration;
 var alphaChange = fadeProgress * alphaDiff;
 fadeColor.a = alphaStart - alphaChange;
 rend.material.color = fadeColor;
 } else {
 fadeColor.a = alphaEnd;
 rend.material.color = fadeColor;

 if(destroyInvisibleObject)
 Destroy (gameObject);

Chapter 4

175

 isFading = false;
 }
 }
 }

 void OnMouseUp(){
 FadeAlpha();
 }

 public void FadeAlpha(){
 isFading = true;
 startTime = Time.time;
 }
}

9. Save your script and apply it to the Sphere Game.

10. Play your scene and click on the Sphere to see it fade away and self-destruct.

How it works...
Since the opaqueness of the material using a transparent Shader is determined by the alpha
value of its main color, all we need to do in order to fade it is changing that value over a given
amount of time. This transformation is expressed, in our script, on the following lines of code:

var fadeProgress = elapsedTime / fadeDuration;
var alphaChange = fadeProgress * alphaDiff;
fadeColor.a = alphaStart - alphaChange;
rend.material.color = fadeColor;

There's more...
You could call the FadeAlpha function in other circumstances (such as a Rigidbody
collision, for instance). In fact, you could even call it from another Game Object's script
by using the GetComponent command. The script would be something like:

GameObject.Find("Sphere").GetComponent<FadeMaterial>().FadeAlpha();

Playing videos inside a scene
TV sets, projectors, monitors.... If you want complex animated materials in your level, you
can play video files as texture maps. In this recipe, we will learn how to apply a video texture
to a cube. We will also implement a simple control scheme that plays or pauses the video
whenever that cube is clicked on.

Creating Maps and Materials

176

Getting ready
Unity imports video files through Apple Quicktime. If you don't have it installed in your
machine, please download it at http://www.apple.com/quicktime/download/.

Also, if you need a video file to follow this recipe, please use the videoTexture.mov
included in the folder 1632_04_08.

How to do it...
Follow these steps:

1. Add a cube to the scene through the GameObject | 3D Object | Cube menu.

2. Import the provided videoTexture.mov file.

3. From the Project view, use the Create drop-down menu to create a new
Material. Rename it Video_MAT and, from the Inspector view, change its
Shader to Unlit/Texture:

4. Apply videoTexture to the texture slot of Video_MAT by dragging it from the
Project view into the appropriate slot.

5. Apply the Video_MAT to the Cube you have previously created.

6. Expand videoTexture on the Project view to reveal its correspondent Audio Clip.
Then, apply that audio clip to the Cube (you can do it by dragging it from the Project
view to the Cube in the Hierarchy view, or a Scene view).

http://www.apple.com/quicktime/download/

Chapter 4

177

7. Select the Cube. Make sure there is a Collider component visible from the Inspector
view. In case there isn't one, add it via the Component | Physics | Box Collider
menu. Colliders are needed for mouse collision detection.

8. Now we need to create a script for controlling the movie texture and associated audio
clip. From Project view, use the Create drop-down menu to add a C# Script. Name it
PlayVideo.

9. Open the script and replace it with the following code:
using UnityEngine;
using System.Collections;

[RequireComponent(typeof(AudioSource))]

public class PlayVideo : MonoBehaviour {

 public bool loop = true;
 public bool playFromStart = true;
 public MovieTexture video;
 public AudioClip audioClip;
 private AudioSource audio;

 void Start () {
 audio = GetComponent<AudioSource> ();

 if (!video)
 video = GetComponent<Renderer>().material.mainTexture as
MovieTexture;

 if (!audioClip)
 audioClip = audio.clip;

 video.Stop ();
 audio.Stop ();
 video.loop = loop;
 audio.loop = loop;

 if(playFromStart)
 ControlMovie();
 }

 void OnMouseUp(){
 ControlMovie();
 }

Creating Maps and Materials

178

 public void ControlMovie(){

 if(video.isPlaying){
 video.Pause();
 audio.Pause();
 } else {
 video.Play();
 audio.Play();
 }
 }
}

10. Save your script and attach it to the Cube.

11. Test your scene. You should be able to see the movie being played in the cube face,
and also pause/play it by clicking on it.

How it works...
By default, our script makes the movie texture play in loop mode. There is, however, a Boolean
variable than can be changed through the Inspector panel, where it is represented by a check
box. Likewise, there is a check box that can be used to prevent the movie from playing when
the level starts.

There's more...
There are some other movie texture commands and parameters that can be played
with. Don't forget to check out Unity's scripting guide at http://docs.unity3d.com/
Documentation/ScriptReference/MovieTexture.html.

Conclusion
This chapter has covered a number of techniques used to create, often manually and
sometimes automatically, texture maps that are capable of giving distinctive features to
materials. Hopefully, you are now more confident about working with Unity's new Physically-
Based Shading, which is capable of understanding differences between available workflows,
is aware of the role of each material property, and is ready to make better-looking materials
for your games. We have also explored ways of changing the properties of materials during
runtime by accessing an object's material via script.

http://docs.unity3d.com/Documentation/ScriptReference/MovieTexture.html
http://docs.unity3d.com/Documentation/ScriptReference/MovieTexture.html

Chapter 4

179

Resources
Physically-Based Rendering is a complex (and current) topic, so it's a good idea to study it a bit
by familiarizing yourself with the tools and concepts behind it. To help you with this task, we
have included a non-exhaustive list of resources below that you should take a look at.

References
Here's a list of interesting, detailed material on Physically-Based Rendering (within and
outside Unity):

 f The Comprehensive PBR Guide Volumes 1 and 2 by Wes McDermott (Allegorithmic),
available at http://www.allegorithmic.com/pbr-guide. This guide takes an
in-depth look at the practical and theoretical aspects of PBR, including great analysis
of possible workflows.

 f Mastering Physically Based Shading in Unity 5 by Renaldas Zioma (Unity), Erland
Körner (Unity), and Wes McDermott (Allegorithmic), is available at http://www.
slideshare.net/RenaldasZioma/unite2014-mastering-physically-
based-shading-in-unity-5. This is a detailed presentation about using PBS
in Unity. Originally presented at the Unite 2014 conference, it contains some
out-of-date information, but, nevertheless, it is still worth taking a look at.

 f Physically Based Shading in Unity 5 by Aras Pranckevičius, from Unity, is available
at http://aras-p.info/texts/talks.html. Slides and notes from a
presentation on the subject are given at the GDC.

 f Tutorial: Physically Based Rendering, And You Can Too! by Joe "EarthQuake" Wilson
is available at http://www.marmoset.co/toolbag/learn/pbr-practice.
It is a great overview from the makers of Marmoset Toolbag and Skyshop.

 f Polycount PBR Wiki, which is available at http://wiki.polycount.com/wiki/
PBR, is a list of resources compiled by the Polycount community.

Tools
This is a new generation of texturing software for you to check out, in case you haven't yet:

 f Substance Painter is a 3D painting application from Allegorithmic. It is available at
http://www.allegorithmic.com/products/substance-painter. Again,
it's worth mentioning that Allegorithmic products won't make use of Unity's Standard
Shader, relying instead on substance files that are natively supported by Unity.

 f Bitmap2Material creates full-featured materials (including normal maps,
specular maps, and more) from a single bitmap image. Also, it is from
Allegorithmic, and it is available at http://www.allegorithmic.com/
products/bitmap2material.

http://www.allegorithmic.com/pbr-guide
http://www.slideshare.net/RenaldasZioma/unite2014-mastering-physically-based-shading-in-unity-5
http://www.slideshare.net/RenaldasZioma/unite2014-mastering-physically-based-shading-in-unity-5
http://www.slideshare.net/RenaldasZioma/unite2014-mastering-physically-based-shading-in-unity-5
http://aras-p.info/texts/talks.html
http://www.marmoset.co/toolbag/learn/pbr-practice
http://wiki.polycount.com/wiki/PBR
http://wiki.polycount.com/wiki/PBR
http://www.allegorithmic.com/products/substance-painter
http://www.allegorithmic.com/products/bitmap2material
http://www.allegorithmic.com/products/bitmap2material

Creating Maps and Materials

180

 f Quixel DDO is a plugin for creating PBR-ready textures in Adobe Photoshop.
From Quixel, it is available at http://www.quixel.se/ddo.

 f Quixel NDO is a plugin for creating Normal maps in Adobe Photoshop.
From Quixel, it is available at http://www.quixel.se/ndo.

 f Mari is a 3D painting tool from The Foundry. It is available at
http://www.thefoundry.co.uk/products/mari/.

http://www.quixel.se/ddo
http://www.quixel.se/ndo
http://www.thefoundry.co.uk/products/mari/

Chapter 5

181

5
Using Cameras

In this chapter, we will cover:

 f Creating a picture-in-picture effect

 f Switching between multiple cameras

 f Making textures from screen content

 f Zooming a telescopic camera

 f Displaying a mini-map

 f Creating an in-game surveillance camera

Introduction
As developers, we should never forget to pay attention to the cameras. After all, they are
the windows through which our players see our games. In this chapter, we will take a look
at interesting ways of using cameras that enhance the player's experience.

The big picture
Cameras can be customized in many ways:

 f They can exclude objects on specific layers from rendering

 f They can be set to render in Orthographic mode (that is, without perspective)

 f They can have their Field of View (FOV) manipulated to simulate a wide angle lens

 f They can be rendered on top of other cameras or within specific areas of the screen

 f They can be rendered onto Textures

Using Cameras

182

The list goes on.

Two simultaneous camera views

Note that throughout this chapter you will notice that some recipes feature a camera rig
that follows the player's third-person character. That rig is the Multipurpose Camera Rig,
originally available from Unity's sample assets, which can be imported into your projects by
navigating to Assets | Import Package | Camera. To make things easier, we organized the
MultipurposeCamera Unity Package containing it as a prefab, which can be found
in the 1362_05_codes folder.

Chapter 5

183

Creating a picture-in-picture effect
Having more than one viewport displayed can be useful in many situations. For example, you
may want to show simultaneous events going on in different locations, or you may want to
have a separate window for hot-seat multiplayer games. Although you can do this manually by
adjusting the Normalized Viewport Rect parameters on your camera, this recipe includes a
series of extra preferences to make it more independent from the user's display configuration.

Getting ready
For this recipe, we have prepared the BasicScene Unity package, containing a scene named
BasicScene. The package is in the 1362_05_codes folder.

How to do it...
To create a picture-in-picture display, just follow these steps:

1. Import the BasicScene package into your Unity Project.

2. From the Project view, open the BasicScene level. This is a basic scene featuring an
animated character and some extra geometry.

3. Add a new Camera to the scene through the Create drop-down menu on top of the
Hierarchy view (Create | Camera).

4. Select the camera you have created and, from the Inspector view, change its Depth
to 1, as shown in the following screenshot:

Using Cameras

184

5. From the Project view, create a new C# Script file and rename it
PictureInPicture.

6. Open your script and replace everything with the following code:
using UnityEngine;

public class PictureInPicture: MonoBehaviour {
 public enum hAlignment{left, center, right};
 public enum vAlignment{top, middle, bottom};
 public hAlignment horAlign = hAlignment.left;
 public vAlignment verAlign = vAlignment.top;
 public enum UnitsIn{pixels, screen_percentage};
 public UnitsIn unit = UnitsIn.pixels;
 public int width = 50;
 public int height= 50;
 public int xOffset = 0;
 public int yOffset = 0;
 public bool update = true;
 private int hsize, vsize, hloc, vloc;

 void Start (){
 AdjustCamera ();
 }

 void Update (){
 if(update)
 AdjustCamera ();
 }

 void AdjustCamera(){
 int sw = Screen.width;
 int sh = Screen.height;
 float swPercent = sw * 0.01f;
 float shPercent = sh * 0.01f;
 float xOffPercent = xOffset * swPercent;
 float yOffPercent = yOffset * shPercent;
 int xOff;
 int yOff;
 if(unit == UnitsIn.screen_percentage){
 hsize = width * (int)swPercent;
 vsize = height * (int)shPercent;
 xOff = (int)xOffPercent;
 yOff = (int)yOffPercent;
 } else {
 hsize = width;

Chapter 5

185

 vsize = height;
 xOff = xOffset;
 yOff = yOffset;
 }

 switch (horAlign) {
 case hAlignment.left:
 hloc = xOff;
 break;
 case hAlignment.right:
 int justfiedRight = (sw - hsize);
 hloc = (justfiedRight - xOff);
 break;
 case hAlignment.center:
 float justifiedCenter = (sw * 0.5f) - (hsize * 0.5f);
 hloc = (int)(justifiedCenter - xOff);
 break;
 }

 switch (verAlign) {
 case vAlignment.top:
 int justifiedTop = sh - vsize;
 vloc = (justifiedTop - (yOff));
 break;
 case vAlignment.bottom:
 vloc = yOff;
 break;
 case vAlignment.middle:
 float justifiedMiddle = (sh * 0.5f) - (vsize * 0.5f);
 vloc = (int)(justifiedMiddle - yOff);
 break;
 }

 GetComponent<Camera>().pixelRect = new
Rect(hloc,vloc,hsize,vsize);
 }
}

In case you haven't noticed, we are not achieving percentages by
dividing numbers by 100, but rather multiplying them by 0.01.
The reason behind this is that computer processors are faster at
multiplying than dividing.

Using Cameras

186

7. Save your script and attach it to the camera you previously created.

8. Uncheck the new camera's Audio Listener component and change some of the
PictureInPicture parameters: change Hor Align to right, Ver Align to top, and Unit
to pixels. Leave XOffset and YOffset as 0, change Width to 400 and Height to 200,
as shown here:

9. Play your scene. The new camera's viewport should be visible in the top-right corner
of the screen, as shown below:

Chapter 5

187

How it works...
In this example, we added a second camera in order to display the scene from a different
point of view. The second camera's relative viewport was originally placed on top of the Main
Camera's viewport, hence taking up all of the screen space.

The PictureInPicture script changes the camera's Normalized Viewport Rect, thus
resizing and positioning the viewport according to the user's preferences.

First, it reads user preferences for the component (dimensions, alignment, and offset for the
PiP viewport) and converts dimensions in screen percentage to pixels.

Later, from the if(unit == UnitsIn.screen_percentage){ conditional, the script
calculates two of the viewport Rect parameters (width and height) according to the user's
selection.

Later on, to switch statements to adjust the other two viewport Rect parameters (horizontal
and vertical location) according to the total screen dimensions, PiP viewport dimension,
vertical/horizontal alignment, and offset.

Finally, a line of code tells the camera to change the location and dimensions of the camera's
Viewport Rect:

GetComponent<Camera>().pixelRect = new
Rect(hloc,vloc,hsize,vsize);

There's more...
The following are some aspects of your picture-in-picture that you could change:

Making the picture-in-picture proportional to the screen's size
If you change the Unit option to screen_percentage, the viewport size will be based on
the actual screen's dimensions instead of pixels.

Changing the position of the picture-in-picture
The Ver Align and Hor Align options can be used to change the viewport's vertical and
horizontal alignment. Use them to place it where you wish.

Preventing the picture-in-picture from updating on every frame
Leave the Update option unchecked if you don't plan to change the viewport position in
running mode. Also, it's a good idea to leave it checked when testing and uncheck it once
the position has been decided and set up.

Using Cameras

188

See also
 f The Displaying a mini-map recipe in this chapter

Switching between multiple cameras
Choosing from a variety of cameras is a common feature in many genres: racing, sports,
tycoon/strategy, and many others. In this recipe, you will learn how to give players the ability
to choose from many cameras by using their keyboards.

Getting ready
For this recipe, we have prepared the BasicScene Unity package containing a scene named
BasicScene. The package is in the 1362_05_codes folder.

How to do it...
To implement switchable cameras, follow these steps:

1. Import the BasicScene package into a new Project.

2. From the Project view, open the BasicScene level. This is a basic scene featuring an
animated character and some extra geometry.

3. Add two more cameras to the scene through the Create drop-down menu on top of
the Hierarchy view (Create | Camera). Rename them cam1 and cam2.

4. Change the cam2 camera's position and rotation so that it won't be identical to cam1.

5. Create an Empty GameObject by navigating to the Create drop-down menu on top of
the Hierarchy view (Create | Create Empty). Then, rename it Switchboard.

6. From the Inspector view, disable the Camera and Audio Listener components of
both cam1 and cam2. Also, set their Tags as MainCamera, as shown:

Chapter 5

189

7. From the Project view, create a new C# Script file. Rename it CameraSwitch and
open it in your editor.

8. Open your script and replace everything with the following code:
using UnityEngine;

public class CameraSwitch : MonoBehaviour {
 public GameObject[] cameras;
 public string[] shortcuts;
 public bool changeAudioListener = true;
 void Update (){
 if (Input.anyKeyDown) {
 for (int i=0; i<cameras.Length; i++) {
 if (Input.GetKeyDown (shortcuts [i]))
 SwitchCamera (i);
 }
 }

Using Cameras

190

 }

void SwitchCamera (int indexToSelect){
 for (int i = 0; i<cameras.Length; i++){
 // test whether current array index matches camera to make
active
 bool cameraActive = (i == indexToSelect);
 cameras[i].GetComponent<Camera>().enabled = cameraActive;

 if (changeAudioListener)
 cameras[i].GetComponent<AudioListener>().enabled =
cameraActive;
 }
 }
}

9. Attach CameraSwitch to the Switchboard GameObject.

10. From the Inspector view, set both the Cameras and Shortcuts sizes to 3. Then, drag
and populate the Cameras slots with the cameras from the scene (including the
Main Camera, within the Multipurpose Camera Rig | Pivot GameObject) Then,
type 1, 2, and 3 into the Shortcuts text fields, as shown in the next screenshot:

11. Play your scene and test your cameras by pressing 1, 2, and 3 on the keyboard.

Chapter 5

191

How it works...
The script is very straightforward. First, it compares the key being pressed to the list of shortcuts.
If the key is indeed included on a list of shortcuts, it is passed on to the SwitchCamera
function, which, in turn, goes through a list of cameras, enables the one associated with the
shortcut that was received, and also enables its Audio Listener, in case the Change Audio
Listener option is checked.

There's more...
Here are some ideas about how you could try twisting this recipe a bit.

Using a single-enabled camera
A different approach to the problem would be keeping all secondary cameras disabled
and assigning their position and rotation to the main camera via a script (you would need
to make a copy of the main camera and add it to the list, in case you wanted to save its
Transform settings).

Triggering the switch from other events
Also, you can change your camera from other GameObjects' scripts by using a line of code
such as the one given here:

GameObject.Find("Switchboard").GetComponent("CameraSwitch").Switch
Camera(1);

See also
 f The Creating an in-game surveillance camera recipe in this chapter

Making textures from screen content
If you want your game or player to take in-game snapshots and apply them as textures, this
recipe will show you how. This can be very useful if you plan to implement an in-game photo
gallery or display a snapshot of a past key moment at the end of a level (racing games and
stunt simulations use this feature a lot). For this particular example, we will take a snapshot
from within a framed region of the screen and print it on the top-right corner of the display.

Getting ready
For this recipe, we have prepared the BasicScene Unity package, containing a scene named
BasicScene. The package is in the 1362_05_codes folder.

Using Cameras

192

How to do it...
To create textures from screen content, follow these steps:

1. Import the BasicScene package into a new Project.

2. From the Project view, open the BasicScene level. This is a basic scene featuring
an animated character and some extra geometry. It also features a Canvas for
UI elements.

3. Create an UI Image GameObject from the Create drop-down menu on top of the
Hierarchy view (Create | UI | Image). Please note that it will be created as a child
of the Canvas GameObject. Then, rename it frame.

4. From the Inspector view, find the Image (Script) component of the frame
GameObject and set InputFieldBackground as its Source Image. This is a sprite
that comes bundled with Unity, and it's already sliced for resizing purposes.

5. Now, from the Inspector view, change Rect Transform to the following values:
Anchors | Min | X: 0.25, Y: 0.25; Anchors | Max | X: 0.75, Y: 0.75;
Pivot | X: 0.5, Y: 0.5; Left: 0; Top: 0; Pos Z: 0; Right: 0; Bottom: 0.

6. From the Image (Script) component, uncheck the Fill Center option, as shown below:

7. Create an UI Raw Image GameObject from the Create drop-down menu on top of
the Hierarchy view (Create | UI | RawImage). Please note that it will be created
as a child of the Canvas GameObject. Then, rename it Photo.

Chapter 5

193

8. From the Inspector view, find the Raw Image (Script) component of the Photo
GameObject and set None as its Texture. Also, from the top of the Inspector view,
disable the Photo GameObject by unchecking the box on the side of its name.

9. Now, from the Inspector view, change the Rect Transform to the following values:
Width: 1; Height: 1; Anchors | Min | X: 0, Y: 1; Anchors | Max | X: 0, Y: 1; Pivot | X:
0, Y: 1; Pos X: 0; Pos Y: 0; Pos Z: 0 as shown in the following screenshot:

10. We need to create a script. In the Project view, click on the Create drop-down menu
and choose C# Script. Rename it ScreenTexture and open it in your editor.

11. Open your script and replace everything with the following code:
using UnityEngine;
using UnityEngine.UI;
using System.Collections;

public class ScreenTexture : MonoBehaviour {
 public GameObject photoGUI;
 public GameObject frameGUI;
 public float ratio = 0.25f;

 void Update (){
 if (Input.GetKeyUp (KeyCode.Mouse0))

Using Cameras

194

 StartCoroutine(CaptureScreen());
 }

 IEnumerator CaptureScreen (){
 photoGUI.SetActive (false);
 int sw = Screen.width;
 int sh = Screen.height;
 RectTransform frameTransform =
frameGUI.GetComponent<RectTransform> ();
 Rect framing = frameTransform.rect;
 Vector2 pivot = frameTransform.pivot;
 Vector2 origin = frameTransform.anchorMin;
 origin.x *= sw;
 origin.y *= sh;
 float xOffset = pivot.x * framing.width;
 origin.x += xOffset;
 float yOffset = pivot.y * framing.height;
 origin.y += yOffset;
 framing.x += origin.x;
 framing.y += origin.y;
 int textWidth = (int)framing.width;
 int textHeight = (int)framing.height;
 Texture2D texture = new
Texture2D(textWidth,textHeight);
 yield return new WaitForEndOfFrame();
 texture.ReadPixels(framing, 0, 0);
 texture.Apply();
 photoGUI.SetActive (true);
 Vector3 photoScale = new Vector3 (framing.width *
ratio, framing.height * ratio, 1);
 photoGUI.GetComponent<RectTransform> ().localScale =
photoScale;
 photoGUI.GetComponent<RawImage>().texture = texture;
 }
}

12. Save your script and apply it to the Main Camera GameObject within the
Multipurpose Camera Rig | Pivot GameObject.

Chapter 5

195

13. In the Inspector view, find the Screen Texture component and populate the fields
Photo GUI and Frame GUI with the GameObjects Photo and frame respectively:

14. Play the scene. You will be able to take a snapshot of the screen (and have it
displayed in the top-left corner at a quarter of the original size) by clicking the
mouse button, as shown in the following screenshot:

How it works...
First, we created a GUI frame from which to take a snapshot and a GUI element onto which to
apply the texture. Then, we applied a script to the Main Camera to capture the screen content
and apply a new texture to it.

The script creates a new texture and captures the left mouse button being pressed,
whereupon it starts a coroutine to calculate a Rect area, copy screen pixels from that area,
and apply them to a texture to be displayed by the photo GUI element, which is also resized
to fit the texture.

Using Cameras

196

The size of the Rect is calculated from the screen's dimensions and the frame's Rect
Transform settings, particularly its Pivot, Anchors, Width, and Height. The screen pixels are
then captured by the ReadPixels() command, and applied to the texture, which is then
applied to the Raw Image photo, which is resized to meet the desired ratio between the
photo size and the original pixels.

There's more...
Apart from displaying the texture as a GUI element, you can use it in other ways.

Applying your texture to a material
You can apply your texture to an existing object's material by adding a line similar to
GameObject.Find("MyObject").renderer.material.mainTexture = texture;
to the end of the CaptureScreen function.

Using your texture as a screenshot
You can encode your texture as a PNG image file and save it. Check out Unity's documentation
on this feature at http://docs.unity3d.com/Documentation/ScriptReference/
Texture2D.EncodeToPNG.html.

See also
 f The Saving screenshots from the game recipe in Chapter 10, Working with the

External Resource Files and Devices

Zooming a telescopic camera
In this recipe, we will create a telescopic camera that zooms in whenever the left mouse
button is pressed. This can be very useful, for instance, if we have a sniper in our game.

Getting ready...
For this recipe, we have prepared the BasicScene Unity package, containing a scene named
BasicScene. The package is in the 1362_05_codes folder.

How to do it...
To create a telescopic camera, follow these steps:

1. Import the BasicScene package into a new Project.

2. From the Project view, open the BasicScene level. This is a basic scene featuring an
animated character and some extra geometry.

http://docs.unity3d.com/Documentation/ScriptReference/Texture2D.EncodeToPNG.html
http://docs.unity3d.com/Documentation/ScriptReference/Texture2D.EncodeToPNG.html

Chapter 5

197

3. Import Unity's Effects package by navigating to Assets | Import Package | Effects.

4. Select the Main Camera GameObject within the Multipurpose Camera Rig | Pivot
GameObject and apply the Vignette image effect (by navigating to Component |
Image Effects | Camera | Vignette and Chromatic Aberration).

5. We need to create a script. In the Project view, click on the Create drop-down menu
and choose C# Script. Rename it TelescopicView and open it in your editor.

6. Open your script and replace everything with the following code:
using UnityEngine;
using System.Collections;
using UnityStandardAssets.ImageEffects;

public class TelescopicView : MonoBehaviour{
 public float zoom = 2.0f;
 public float speedIn = 100.0f;
 public float speedOut = 100.0f;
 private float initFov;
 private float currFov;
 private float minFov;
 private float addFov;
 private VignetteAndChromaticAberration v;
 public float vMax = 10.0f;

 void Start(){
 initFov = Camera.main.fieldOfView;
 minFov = initFov / zoom;
 v = this.GetComponent<VignetteAndChromaticAberration>()
as VignetteAndChromaticAberration;
 }
 void Update(){
 if (Input.GetKey(KeyCode.Mouse0))
 ZoomView();
 else
 ZoomOut();
 float currDistance = currFov - initFov;
 float totalDistance = minFov - initFov;
 float vMultiplier = currDistance / totalDistance;
 float vAmount = vMax * vMultiplier;
 vAmount = Mathf.Clamp (vAmount,0,vMax);
 v.intensity = vAmount;
 }

 void ZoomView(){
 currFov = Camera.main.fieldOfView;

Using Cameras

198

 addFov = speedIn * Time.deltaTime;

 if (Mathf.Abs(currFov - minFov) < 0.5f)
 currFov = minFov;
 else if (currFov - addFov >= minFov)
 currFov -= addFov;

 Camera.main.fieldOfView = currFov;
 }

 void ZoomOut(){
 currFov = Camera.main.fieldOfView;
 addFov = speedOut * Time.deltaTime;

 if (Mathf.Abs(currFov - initFov) < 0.5f)
 currFov = initFov;
 else if (currFov + addFov <= initFov)
 currFov += addFov;

 Camera.main.fieldOfView = currFov;
 }
}

7. Save your script and apply it to the Main Camera GameObject within the
Multipurpose Camera Rig | Pivot GameObject.

8. Play the level. You should see an animated vignette effect in addition to the zooming:

Chapter 5

199

How it works...
The zooming effect is actually caused by changes to the value of the camera's Field Of View
(FOV) property; small values result in closer views of a smaller area, while high values enlarge
the FOV.

The TelescopicView script changes the camera's field of view by subtracting from it
whenever the left mouse button is pressed. It also adds to the FOV value when the mouse
button is not being held, until it reaches its original value.

The zoom limit of the FOV can be deduced from the code minFov = initFov / zoom;.
This means that the minimum value of the FOV is equal to its original value divided by the
zoom amount. For instance, if our camera features, originally, a FOV of 60, and we set the
Telescopic View Zoom amount to 2.0, the minimum FOV allowed will be 60/2 = 30. The
difference is shown in the following two screenshots:

There's more...
You can also add a variable to control the Blur Vignette level of the Vignette image effect.

Using Cameras

200

Displaying a mini-map
In many games, a broader view of the scene can be invaluable for navigation and information.
Mini-maps are great for giving players that extra perspective that they may need when in
first- or third-person mode.

Getting ready...
For this recipe, we have prepared the BasicScene Unity Package, containing a scene
named BasicScene. You will also need to import three image files named Compass.png,
compassMarker.png, and compassMask.png. All files are available in the 1362_05_05
folder.

How to do it...
To create a mini-map, follow these steps:

1. Import the BasicScene package into a new Project. Also, import the provided png
files. Open the BasicScene level.

2. From the Project view, select the Compass, compassMarker, and compassMask
texture files. Then, from the Inspector, change their Texture Type to Sprite (2D and
UI), leaving the Sprite Mode as Single and the Pivot at Center. Click on Apply to
confirm the changes, as shown in the following screenshot:

Chapter 5

201

3. From the Hierarchy view, create a new UI Panel object (Create | UI | Panel). It will
be created as a child of the UI Canvas GameObject. Rename it MiniMap. Then,
from the Inspector view, set its alignment to Top/Right, change both the Width and
Height to 256, and its Pos X and Pos Y fields to -128. Also, populate the Source
Image field, within the Image component, with the compassMask sprite, adjusting
the Color field by bringing Alpha up to 255, as shown in the following screenshot:

4. Add a Mask component to MiniMap (from the main menu, select Component | UI |
Mask). Then, from the Inspector view, find the Mask component and uncheck Show
Mask Graphic (it will become invisible, serving as a mask for the mini-map).

Using Cameras

202

5. Select the MsLaser GameObject (which is the player's character), and, from the top of
the Inspector view, access the Layer drop-down menu. Select Add Layer… and then
name a User Layer Player, as shown in the following screenshot:

6. Select the MsLaser character again, and, from the Layer drop-down menu,
select Player:

7. From the Project view, create a new Render Texture and name it Map_Render.
Then, from Inspector, change its size to 256 x 256.

8. From the Hierarchy view, create a new camera (Create | Camera) and rename it
MapCamera. From the Inspector view, change its parameters as follows (shown in
the screenshot that will follow):

 � Clear Flags: Depth Only

 � Culling Mask: Mixed… (unselect Player)
 � Projection: Orthographic

 � Depth: 1 (or higher)

 � Target Texture: Map_Render

 � Also, uncheck the camera's Audio Listener component

Chapter 5

203

9. From the Hierarchy view, right-click on MiniMap and navigate to UI | Raw Image
to create a child UI element. Name it MapTexture. Then, from the Inspector view,
populate the Texture field with the Map_Render texture and click on the Set Native
Size button, as shown in the following screenshot:

Using Cameras

204

10. Now, right-click on MiniMap and navigate to UI | Image to create another child
element. Name it Compass. Then, from the Inspector view, populate the Source
Image field with the Compass image and click on the Set Native Size button.

11. Once again, right-click on MiniMap and navigate to UI | Image to add another
child element. Name it Marker. Then, from the Inspector view, populate the Source
Image field with the compassMarker image and click on the Set Native Size button.

12. From the Project view, create a new C# Script and name it MiniMap. Open it and
replace everything with the following code:
using UnityEngine;
using UnityEngine.UI;
using System.Collections;

public class MiniMap : MonoBehaviour
{
 public Transform target;
 public GameObject marker;
 public GameObject mapGUI;
 public float height = 10.0f;
 public float distance = 10.0f;
 public bool rotate = true;
 private Vector3 camAngle;
 private Vector3 camPos;
 private Vector3 targetAngle;
 private Vector3 targetPos;
 private Camera cam;

 void Start(){
 cam = GetComponent<Camera> ();
 camAngle = transform.eulerAngles;
 targetAngle = target.transform.eulerAngles;
 camAngle.x = 90;
 camAngle.y = targetAngle.y;
 transform.eulerAngles = camAngle;
 }

 void Update(){
 targetPos = target.transform.position;
 camPos = targetPos;

Chapter 5

205

 camPos.y += height;
 transform.position = camPos;
 cam.orthographicSize = distance;
 Vector3 compassAngle = new Vector3();
 compassAngle.z = target.transform.eulerAngles.y;

 if (rotate) {
 mapGUI.transform.eulerAngles = compassAngle;
 marker.transform.eulerAngles = new Vector3();
 } else {
 marker.transform.eulerAngles = -compassAngle;
 }

 }
}

13. Save the script and attach it to MapCamera. Then, from the Inspector view, change
the parameters of the Mini Map component as follows (shown in the screenshot that
will follow):

 � Target: MsLaser

 � Marker: Marker (the UI element previously created)

 � Map GUI: MiniMap (the UI panel previously created)

 � Height: 10

 � Distance: 10

 � Rotate: Checked

Using Cameras

206

14. Play the scene. You should be able to see the mini-map functioning in the top-right
corner of the screen:

How it works...
The main element of the mini-map is a texture, used as a GUI element, rendered from an
orthographic camera that follows the player from a top-down perspective. Some necessary
adjustments were made to MapCamera:

 f Changing its Projection mode to Orthographic (to make it two-dimensional)

 f Excluding the Player tag from its Culling Mask (to make the character's model
invisible to the camera)

 f Disabling its Audio Listener (so it won't conflict with the main camera)

The mini-map was embellished with a compass frame and a marker indicating the player's
position. All these GUI elements were parented by a Panel that also functioned as a Mask
to the visual elements. Finally, a script was created, serving three purposes: configuring
preferences for the Camera (such as the area covered), repositioning the Camera at runtime
according to the player's transform settings, and rotating the appropriate UI elements.

There's more...
If you want to experiment more with your mini-map, read on.

Chapter 5

207

Covering a wider or narrower area
The range of the mini-map is given by the Distance parameter. A higher value will result in
coverage of a wider area, as the MiniMap class uses the same value as the viewport size
of the orthographic camera.

Changing the map's orientation
The mini-map, by default, is set to rotate as the player changes direction. Should you want it
to be static, uncheck the Rotate option to make the Marker rotate instead.

Adapting your mini-map to other styles
You can easily modify this recipe to make a top or isometric view of a racing game circuit map.
Just position the camera manually and prevent it from following the character.

Creating an in-game surveillance camera
Although using a second viewport can be useful in many situations, there will be times when
you need to output the image rendered from a camera to a texture at runtime. To illustrate this
point, in this recipe, we will make use of Render Texture to create an in-game surveillance
camera that transmits its video to a monitor.

In-game surveillance cameras

Getting ready
For this recipe, we have prepared the BasicScene Unity package, containing a scene named
BasicScene, and also two FBX 3D models for the monitor and camera objects. The package
is in the 1362_05_codes folder, and the 3D models are in the 1362_05_06 folder.

Using Cameras

208

How to do it...
To create a picture-in-picture display, just follow these steps:

1. Import the BasicScene package and the monitor and camera models into your
Unity Project.

2. From the Project view, open the BasicScene level. This is a basic scene featuring an
animated character and some extra geometry.

3. From the Project view, place the monitor and camera objects into the scene by
dragging them into the Hierarchy panel. Their Transform settings should be (shown
in the following screenshot): monitor: Position: X: 0; Y: 0.09; Z: 4. Rotation: X: 0;
Y: 180; Z: 0. camera: Position: X: -3; Y: 0.06; Z: 4. Rotation: X: 0; Y: 90; Z: 0:

4. Create, from the Project view, a new Render Texture, and rename it screen. Then,
from the Inspector view, change its Size to 512 x 512.

5. Add a new Camera to the scene through the Create drop-down menu on top of
the Hierarchy view (Create | Camera). Then, from the Inspector view, name it
Surveillance and make it a child of the camera GameObject. Then, change its
Transform settings to the following: Position: X: 0; Y: 2; Z: 0, and Rotation: X: 0;
Y: 0; Z: 0.

Chapter 5

209

6. Select the Surveillance camera you have created, and, from the Inspector view,
change its Clipping Planes | Near to 0.6. Also, populate the Target Texture slot with
the Render Texture screen and disable the camera's Audio Listener component, as
shown in the following screenshot:

7. From the Hierarchy view, expand the monitor object and select its screen child.
Then, from the Inspector, find its material (named Desert), and, from the Shader
drop-down menu, change itto Unlit/Texture. Finally, set the screen texture as its
base texture, as shown in the following screenshot:

8. Now it's time to add some post-processing to the texture. From the main menu,
import the Effects package (Assets | Import Package | Effects).

Using Cameras

210

9. From the Hierarchy view, select the Surveillance camera. Then, from the main
menu, add the Grayscale image effect component (Component | Image Effects
| Color Adjustments | Grayscale). Also, add the Noise And Grain image effect
(Component | Image Effects | Noise | Noise and Grain (Filmic)). Finally, from
the Inspector view, set the Intensity Multiplier of the Noise And Grain to 4.

10. Play your scene. You should be able to see your actions in real time on the monitor's
screen, as shown here:

How it works...
We achieved the final result by using the surveillance camera as source for the Render
Texture applied to the screen. The camera was made a child of the camera's 3D model for
easier relocation. Also, its Near Clipping plane was readjusted in order to avoid displaying
parts of the camera's 3D model geometry, and its Audio Source component was disabled
so that it wouldn't clash with the main camera's component.

In addition to setting up the surveillance camera, two Image Effects were added to it: Noise
And Grain and Greyscale. Together, these effects should make Render Texture look more
like a cheap monitor's screen.

Finally, our screen render texture was applied to the screen's 3D object's material (which
had its shader changed to Unlit/texture so it could be seen in low/no light conditions,
like a real monitor).

Chapter 6

211

6
Lights and Effects

In this chapter, we will cover:

 f Using lights and cookie textures to simulate a cloudy day

 f Adding a custom Reflection map to a scene

 f Creating a laser aim with Projector and Line Renderer

 f Reflecting surrounding objects with Reflection Probes

 f Setting up an environment with Procedural Skybox and Directional Light

 f Lighting a simple scene with Lightmaps and Light Probes

Introduction
Whether you're willing to make a better-looking game, or add interesting features, lights and
effects can boost your project and help you deliver a higher quality product. In this chapter,
we will look at the creative ways of using lights and effects, and also take a look at some of
Unity's new features, such as Procedural Skyboxes, Reflection Probes, Light Probes, and
custom Reflection Sources.

Lighting is certainly an area that has received a lot of attention from Unity, which now features
real-time Global Illumination technology provided by Enlighten. This new technology provides
better and more realistic results for both real-time and baked lighting. For more information
on Unity's Global Illumination system, check out its documentation at http://docs.
unity3d.com/Manual/GIIntro.html.

The big picture
There are many ways of creating light sources in Unity. Here's a quick overview of the most
common methods.

http://docs.unity3d.com/Manual/GIIntro.html
http://docs.unity3d.com/Manual/GIIntro.html

Lights and Effects

212

Lights
Lights are placed into the scene as game objects, featuring a Light component. They can
function in Realtime, Baked, or Mixed modes. Among the other properties, they can have
their Range, Color, Intensity, and Shadow Type set by the user. There are four types of lights:

 f Directional Light: This is normally used to simulate the sunlight

 f Spot Light: This works like a cone-shaped spot light

 f Point Light: This is a bulb lamp-like, omnidirectional light

 f Area Light: This baked-only light type is emitted in all directions from a
rectangle-shaped entity, allowing for a smooth, realistic shading

For an overview of the light types, check Unity's documentation at http://docs.unity3d.
com/Manual/Lighting.html.

Different types of lights

Environment Lighting
Unity's Environment Lighting is often achieved through the combination of a Skybox
material and sunlight defined by the scene's Directional Light. Such a combination creates
an ambient light that is integrated into the scene's environment, and which can be set as
Realtime or Baked into Lightmaps.

http://docs.unity3d.com/Manual/Lighting.html
http://docs.unity3d.com/Manual/Lighting.html

Chapter 6

213

Emissive materials
When applied to static objects, materials featuring the Emission colors or maps will
cast light over surfaces nearby, in both real-time and baked modes, as shown in the
following screenshot:

Projector
As its name suggests, a Projector can be used to simulate projected lights and shadows,
basically by projecting a material and its texture map onto the other objects.

Lights and Effects

214

Lightmaps and Light Probes
Lightmaps are basically texture maps generated from the scene's lighting information and
applied to the scene's static objects in order to avoid the use of processing-intensive real-time
lighting.

Light Probes are a way of sampling the scene's illumination at specific points in order to have
it applied onto dynamic objects without the use of real-time lighting.

The Lighting window
The Lighting window, which can be found through navigating to the Window | Lighting menu,
is the hub for setting and adjusting the scene's illumination features, such as Lightmaps,
Global Illumination, Fog, and much more. It's strongly recommended that you take a look at
Unity's documentation on the subject, which can be found at http://docs.unity3d.com/
Manual/GlobalIllumination.html.

http://docs.unity3d.com/Manual/GlobalIllumination.html
http://docs.unity3d.com/Manual/GlobalIllumination.html

Chapter 6

215

Using lights and cookie textures to simulate
a cloudy day

As it can be seen in many first-person shooters and survival horror games, lights and shadows
can add a great deal of realism to a scene, helping immensely to create the right atmosphere
for the game. In this recipe, we will create a cloudy outdoor environment using cookie
textures. Cookie textures work as masks for lights. It functions by adjusting the intensity of
the light projection to the cookie texture's alpha channel. This allows for a silhouette effect
(just think of the bat-signal) or, as in this particular case, subtle variations that give a filtered
quality to the lighting.

Getting ready
If you don't have access to an image editor, or prefer to skip the texture map elaboration in
order to focus on the implementation, please use the image file called cloudCookie.tga,
which is provided inside the 1362_06_01 folder.

How to do it...
To simulate a cloudy outdoor environment, follow these steps:

1. In your image editor, create a new 512 x 512 pixel image.

2. Using black as the foreground color and white as the background color, apply
the Clouds filter (in Photoshop, this is done by navigating to the Filter | Render |
Clouds menu).

Lights and Effects

216

Learning about the Alpha channel is useful, but you could get
the same result without it. Skip steps 3 to 7, save your image
as cloudCookie.png and, when changing texture type in
step 9, leave Alpha from Greyscale checked.

3. Select your entire image and copy it.

4. Open the Channels window (in Photoshop, this can be done by navigating to the
Window | Channels menu).

5. There should be three channels: Red, Green, and Blue. Create a new channel. This
will be the Alpha channel.

6. In the Channels window, select the Alpha 1 channel and paste your image into it.

7. Save your image file as cloudCookie.PSD or TGA.

8. Import your image file to Unity and select it in the Project view.

9. From the Inspector view, change its Texture Type to Cookie and its Light Type to
Directional. Then, click on Apply, as shown:

Chapter 6

217

10. We will need a surface to actually see the lighting effect. You can either add a plane
to your scene (via navigating to the GameObject | 3D Object | Plane menu), or
create a Terrain (menu option GameObject | 3D Object | Terrain) and edit it, if you
so you wish.

11. Let's add a light to our scene. Since we want to simulate sunlight, the best option is
to create a Directional Light. You can do this through the drop-down menu named
Create | Light | Directional Light in the Hierarchy view.

12. Using the Transform component of the Inspector view, reset the light's Position to X:
0, Y: 0, Z: 0 and its Rotation to X: 90; Y: 0; Z: 0.

13. In the Cookie field, select the cloudCookie texture that you imported earlier. Change
the Cookie Size field to 80, or a value that you feel is more appropriate for the
scene's dimension. Please leave Shadow Type as No Shadows.

Lights and Effects

218

14. Now, we need a script to translate our light and, consequently, the Cookie projection.
Using the Create drop-down menu in the Project view, create a new C# Script named
MovingShadows.cs.

15. Open your script and replace everything with the following code:
using UnityEngine;
using System.Collections;

public class MovingShadows : MonoBehaviour{
 public float windSpeedX;
 public float windSpeedZ;
 private float lightCookieSize;
 private Vector3 initPos;

 void Start(){
 initPos = transform.position;
 lightCookieSize = GetComponent<Light>().cookieSize;
 }

 void Update(){
 Vector3 pos = transform.position;
 float xPos= Mathf.Abs (pos.x);
 float zPos= Mathf.Abs (pos.z);
 float xLimit = Mathf.Abs(initPos.x) + lightCookieSize;
 float zLimit = Mathf.Abs(initPos.z) + lightCookieSize;

 if (xPos >= xLimit)
 pos.x = initPos.x;

 if (zPos >= zLimit)
 pos.z = initPos.z;

 transform.position = pos;
 float windX = Time.deltaTime * windSpeedX;
 float windZ = Time.deltaTime * windSpeedZ;
 transform.Translate(windX, 0, windZ, Space.World);
 }
}

16. Save your script and apply it to the Directional Light.

Chapter 6

219

17. Select the Directional Light. In the Inspector view, change the parameters
Wind Speed X and Wind Speed Z to 20 (you can change these values as you
wish, as shown).

18. Play your scene. The shadows will be moving.

How it works...
With our script, we are telling the Directional Light to move across the X and Z axis, causing
the Light Cookie texture to be displaced as well. Also, we reset the light object to its original
position whenever it traveled a distance that was either equal to or greater than the Light
Cookie Size. The light position must be reset to prevent it from traveling too far, causing
problems in real-time render and lighting. The Light Cookie Size parameter is used to ensure
a smooth transition.

The reason we are not enabling shadows is because the light angle for the X axis must be 90
degrees (or there will be a noticeable gap when the light resets to the original position). If you
want dynamic shadows in your scene, please add a second Directional Light.

There's more...
In this recipe, we have applied a cookie texture to a Directional Light. But what if we were
using the Spot or Point Lights?

Creating Spot Light cookies
Unity documentation has an excellent tutorial on how to make the Spot Light cookies. This is
great to simulate shadows coming from projectors, windows, and so on. You can check it out
at http://docs.unity3d.com/Manual/HOWTO-LightCookie.html.

Creating Point Light Cookies
If you want to use a cookie texture with a Point Light, you'll need to change the Light Type in
the Texture Importer section of the Inspector.

http://docs.unity3d.com/Manual/HOWTO-LightCookie.html

Lights and Effects

220

Adding a custom Reflection map to a scene
Whereas Unity Legacy Shaders use individual Reflection Cubemaps per material, the new
Standard Shader gets its reflection from the scene's Reflection Source, as configured in the
Scene section of the Lighting window. The level of reflectiveness for each material is now
given by its Metallic value or Specular value (for materials using Specular setup). This new
method can be a real time saver, allowing you to quickly assign the same reflection map to
every object in the scene. Also, as you can imagine, it helps keep the overall look of the scene
coherent and cohesive. In this recipe, we will learn how to take advantage of the Reflection
Source feature.

Getting ready
For this recipe, we will prepare a Reflection Cubemap, which is basically the environment to
be projected as a reflection onto the material. It can be made from either six or, as shown in
this recipe, a single image file.

To help us with this recipe, it's been provided a Unity package, containing a prefab made of a
3D object and a basic Material (using a TIFF as Diffuse map), and also a JPG file to be used as
the reflection map. All these files are inside the 1362_06_02 folder.

How to do it...
To add Reflectiveness and Specularity to a material, follow these steps:

1. Import batteryPrefab.unitypackage to a new project. Then, select battery_
prefab object from the Assets folder, in the Project view.

2. From the Inspector view, expand the Material component and observe the asset
preview window. Thanks to the Specular map, the material already features a
reflective look. However, it looks as if it is reflecting the scene's default Skybox,
as shown:

Chapter 6

221

3. Import the CustomReflection.jpg image file. From the Inspector view, change its
Texture Type to Cubemap, its Mapping to Latitude - Longitude Layout (Cylindrical),
and check the boxes for Glossy Reflection and Fixup Edge Seams. Finally, change its
Filter Mode to Trilinear and click on the Apply button, shown as follows:

Lights and Effects

222

4. Let's replace the Scene's Skybox with our newly created Cubemap, as the Reflection
map for our scene. In order to do this, open the Lighting window by navigating to
the Window | Lighting menu. Select the Scene section and use the drop-down
menu to change the Reflection Source to Custom. Finally, assign the newly created
CustomReflection texture as the Cubemap, shown as follows:

5. Check out for the new reflections on the battery_prefab object.

How it works...
While it is the material's specular map that allows for a reflective look, including the intensity
and smoothness of the reflection, the refection itself (that is, the image you see on the
reflection) is given by the Cubemap that we have created from the image file.

Chapter 6

223

There's more...
Reflection Cubemaps can be achieved in many ways and have different mapping properties.

Mapping coordinates
The Cylindrical mapping that we applied was well-suited for the photograph that we used.
However, depending on how the reflection image is generated, a Cubic or Spheremap-based
mapping can be more appropriate. Also, note that the Fixup Edge Seams option will try to
make the image seamless.

Sharp reflections
You might have noticed that the reflection is somewhat blurry compared to the original image;
this is because we have ticked the Glossy Reflections box. To get a sharper-looking reflection,
deselect this option; in which case, you can also leave the Filter Mode option as default
(Bilinear).

Maximum size
At 512 x 512 pixels, our reflection map will probably run fine on the lower-end machines.
However, if the quality of the reflection map is not so important in your game's context, and
the original image dimensions are big (say, 4096 x 4096), you might want to change the
texture's Max Size at the Import Settings to a lower number.

Creating a laser aim with Projector and Line
Renderer

Although using GUI elements, such as a cross-hair, is a valid way to allow players to aim,
replacing (or combining) it with a projected laser dot might be a more interesting approach. In
this recipe, we will use the Projector and Line components to implement this concept.

Getting ready
To help us with this recipe, it's been provided with a Unity package containing a sample scene
featuring a character holding a laser pointer, and also a texture map named LineTexture.
All files are inside the 1362_06_03 folder. Also, we'll make use of the Effects assets package
provided by Unity (which you should have installed when installing Unity).

Lights and Effects

224

How to do it...
To create a laser dot aim with a Projector, follow these steps:

1. Import BasicScene.unitypackage to a new project. Then, open the scene
named BasicScene. This is a basic scene, featuring a player character whose aim is
controlled via mouse.

2. Import the Effects package by navigating to the Assets | Import Package | Effects
menu. If you want to import only the necessary files within the package, deselect
everything in the Importing package window by clicking on the None button, and
then check the Projectors folder only. Then, click on Import, as shown:

3. From the Inspector view, locate the ProjectorLight shader (inside the Assets
| Standard Assets | Effects | Projectors | Shaders folder). Duplicate the file and
name the new copy as ProjectorLaser.

Chapter 6

225

4. Open ProjectorLaser. From the first line of the code, change
Shader "Projector/Light" to Shader "Projector/Laser". Then, locate
the line of code – Blend DstColor One and change it to Blend One One. Save
and close the file.

The reason for editing the shader for the laser was to make
it stronger by changing its blend type to Additive. Shader
programming is a complex subject, which is beyond the scope
of this book. However, if you want to learn more about it, check
out Unity's documentation on the subject, which is available at
http://docs.unity3d.com/Manual/SL-Reference.
html, and also the book called Unity Shaders and Effects
Cookbook, published by Packt.

5. Now that we have fixed the shader, we need a material. From the Project view, use
the Create drop-down menu to create a new Material. Name it LaserMaterial.
Then, select it from the Project view and, from the Inspector view, change its Shader
to Projector/Laser.

6. From the Project view, locate the Falloff texture. Open it in your image editor and,
except for the first and last columns column of pixels that should be black, paint
everything white. Save the file and go back to Unity.

7. Change the LaserMaterial's Main Color to red (RGB: 255, 0, 0). Then, from the
texture slots, select the Light texture as Cookie and the Falloff texture as Falloff.

http://docs.unity3d.com/Manual/SL-Reference.html
http://docs.unity3d.com/Manual/SL-Reference.html

Lights and Effects

226

8. From the Hierarchy view, find and select the pointerPrefab object (MsLaser |
mixamorig:Hips | mixamorig:Spine | mixamorig:Spine1 | mixamorig:Spine2 |
mixamorig:RightShoulder | mixamorig:RightArm | mixamorig:RightForeArm
| mixamorig:RightHand | pointerPrefab). Then, from the Create drop-down
menu, select Create Empty Child. Rename the new child of pointerPrefab as
LaserProjector.

9. Select the LaserProjector object. Then, from the Inspector view, click the Add
Component button and navigate to Effects | Projector. Then, from the Projector
component, set the Orthographic option as true and set Orthographic Size as 0.1.
Finally, select LaserMaterial from the Material slot.

10. Test the scene. You will be able to see the laser aim dot, as shown:

11. Now, let's create a material for the Line Renderer component that we are about to
add. From the Project view, use the Create drop-down menu to add a new Material.
Name it as Line_Mat.

12. From the Inspector view, change the shader of the Line_Mat to Particles/Additive.
Then, set its Tint Color to red (RGB: 255;0;0).

13. Import the LineTexture image file. Then, set it as the Particle Texture for the
Line_Mat, as shown:

Chapter 6

227

14. Use the Create drop-down menu from Project view to add a C# script named
LaserAim. Then, open it in your editor.

15. Replace everything with the following code:
using UnityEngine;
using System.Collections;
public class LaserAim : MonoBehaviour {

 public float lineWidth = 0.2f;
 public Color regularColor = new Color (0.15f, 0, 0, 1);
 public Color firingColor = new Color (0.31f, 0, 0, 1);
 public Material lineMat;
 private Vector3 lineEnd;
 private Projector proj;
 private LineRenderer line;

 void Start () {
 line = gameObject.AddComponent<LineRenderer>();
 line.material = lineMat;
 line.material.SetColor("_TintColor", regularColor);
 line.SetVertexCount(2);
 line.SetWidth(lineWidth, lineWidth);
 proj = GetComponent<Projector> ();
 }

 void Update () {
 RaycastHit hit;
 Vector3 fwd = transform.TransformDirection(Vector3.forward);

 if (Physics.Raycast (transform.position, fwd, out hit))
 {
 lineEnd = hit.point;
 float margin = 0.5f;
 proj.farClipPlane = hit.distance + margin;

 } else {
 lineEnd = transform.position + fwd * 10f;
 }
 line.SetPosition(0, transform.position);

Lights and Effects

228

 line.SetPosition(1, lineEnd);

 if(Input.GetButton("Fire1")){
 float lerpSpeed = Mathf.Sin (Time.time * 10f);
 lerpSpeed = Mathf.Abs(lerpSpeed);
 Color lerpColor = Color.Lerp(regularColor,
firingColor, lerpSpeed);
 line.material.SetColor("_TintColor", lerpColor);

 }
 if(Input.GetButtonUp("Fire1")){
 line.material.SetColor("_TintColor", regularColor);
 }
 }
}

16. Save your script and attach it to the LaserProjector game object.

17. Select the LaserProjector GameObject. From the Inspector view, find the Laser Aim
component and fill the Line Material slot with the Line_Mat material, as shown:

Chapter 6

229

18. Play the scene. The laser aim is ready, and looks as shown:

In this recipe, the width of the laser beam and its aim dot have been
exaggerated. Should you need a more realistic thickness for your beam,
change the Line Width field of the Laser Aim component to 0.05, and
the Orthographic Size of the Projector component to 0.025. Also,
remember to make the beam more opaque by setting the Regular
Color of the Laser Aim component brighter.

How it works...
The laser aim effect was achieved by combining two different effects: a Projector and
Line Renderer.

A Projector, which can be used to simulate light, shadows, and more, is a component that
projects a material (and its texture) onto other game objects. By attaching a projector to the
Laser Pointer object, we have ensured that it will face the right direction at all times. To get
the right, vibrant look, we have edited the projector material's Shader, making it brighter. Also,
we have scripted a way to prevent projections from going through objects, by setting its Far
Clip Plane on approximately the same level of the first object that is receiving the projection.
The line of code that is responsible for this action is—proj.farClipPlane = hit.
distance + margin;.

Lights and Effects

230

Regarding the Line Renderer, we have opted to create it dynamically, via code, instead of
manually adding the component to the game object. The code is also responsible for setting
up its appearance, updating the line vertices position, and changing its color whenever the
fire button is pressed, giving it a glowing/pulsing look.

For more details on how the script works, don't forget to check out the commented code,
available within the 1362_06_03 | End folder.

Reflecting surrounding objects with
Reflection Probes

If you want your scene's environment to be reflected by game objects, featuring reflective
materials (such as the ones with high Metallic or Specular levels), then you can achieve such
effect using Reflection Probes. They allow for real-time, baked, or even custom reflections
through the use of Cubemaps.

Real-time reflections can be expensive in terms of processing; in which case, you should
favor baked reflections, unless it's really necessary to display dynamic objects being reflected
(mirror-like objects, for instance). Still, there are some ways real-time reflections can be
optimized. In this recipe, we will test three different configurations for reflection probes:

 f Real-time reflections (constantly updated)

 f Real-time reflections (updated on-demand) via script

 f Baked reflections (from the Editor)

Getting ready
For this recipe, we have prepared a basic scene, featuring three sets of reflective objects:
one is constantly moving, one is static, and one moves whenever it is interacted with. The
Probes.unitypackage package that is containing the scene can be found inside the
1362_06_04 folder.

How to do it...
To reflect the surrounding objects using the Reflection probes, follow these steps:

1. Import Probes.unitypackage to a new project. Then, open the scene named
Probes. This is a basic scene featuring three sets of reflective objects.

Chapter 6

231

2. Play the scene. Observe that one of the systems is dynamic, one is static, and one
rotates randomly, whenever a key is pressed.

3. Stop the scene.

4. First, let's create a constantly updated real-time reflection probe. From the Create
drop-down button of the Hierarchy view, add a Reflection Probe to the scene (Create
| Light | Reflection Probe). Name it as RealtimeProbe and make it a child of the
System 1 Realtime | MainSphere game object. Then, from the Inspector view, the
Transform component, change its Position to X: 0; Y: 0; Z: 0, as shown:

5. Now, go to the Reflection Probe component. Set Type as Realtime; Refresh Mode as
Every Frame and Time Slicing as No time slicing, shown as follows:

6. Play the scene. The reflections will be now be updated in real time. Stop the scene.

Lights and Effects

232

7. Observe that the only object displaying the real-time reflections is System 1 Realtime
| MainSphere. The reason for this is the Size of the Reflection Probe. From the
Reflection Probe component, change its Size to X: 25; Y: 10; Z: 25. Note that the
small red spheres are now affected as well. However, it is important to notice that all
objects display the same reflection. Since our reflection probe's origin is placed at the
same location as the MainSphere, all reflective objects will display reflections from
that point of view.

8. If you want to eliminate the reflection from the reflective objects within the
reflection probe, such as the small red spheres, select the objects and, from
the Mesh Renderer component, set Reflection Probes as Off, as shown in the
following screenshot:

9. Add a new Reflection Probe to the scene. This time, name it OnDemandProbe and
make it a child of the System 2 On Demand | MainSphere game object. Then, from
the Inspector view, Transform component, change its Position to X: 0; Y: 0; Z: 0.

Chapter 6

233

10. Now, go to the Reflection Probe component. Set Type as Realtime, Refresh
Mode as Via scripting, and Time Slicing as Individual faces, as shown in the
following screenshot:

11. Using the Create drop-down menu in the Project view, create a new C# Script
named UpdateProbe.

12. Open your script and replace everything with the following code:
using UnityEngine;
using System.Collections;

public class UpdateProbe : MonoBehaviour {
 private ReflectionProbe probe;

 void Awake () {
 probe = GetComponent<ReflectionProbe> ();
 probe.RenderProbe();
 }

 public void RefreshProbe(){
 probe.RenderProbe();
 }
}

13. Save your script and attach it to the OnDemandProbe.

14. Now, find the script named RandomRotation, which is attached to the System 2 On
Demand | Spheres object, and open it in the code editor.

Lights and Effects

234

15. Right before the Update() function, add the following lines:
private GameObject probe;
private UpdateProbe up;
void Awake(){
 probe = GameObject.Find("OnDemandProbe");
 up = probe.GetComponent<UpdateProbe>();
}

16. Now, locate the line of code called transform.eulerAngles = newRotation;
and, immediately after it, add the following line:
up.RefreshProbe();

17. Save the script and test your scene. Observe how the Reflection Probe is updated
whenever a key is pressed.

18. Stop the scene. Add a third Reflection Probe to the scene. Name it as CustomProbe
and make it a child of the System 3 On Custom | MainSphere game object. Then,
from the Inspector view, the Transform component, change its Position to X: 0; Y: 0;
Z: 0.

19. Go to the Reflection Probe component. Set Type as Custom and click on the Bake
button, as shown:

Chapter 6

235

20. A Save File dialog window will show up. Save the file as
CustomProbe-reflectionHDR.exr.

21. Observe that the reflection map does not include the reflection of red spheres on
it. To change this, you have two options: set the System 3 On Custom | Spheres
GameObject (and all its children) as Reflection Probe Static or, from the Reflection
Probe component of the CustomProbe GameObject, check the Dynamic Objects
option, as shown, and bake the map again (by clicking on the Bake button).

Lights and Effects

236

22. If you want your reflection Cubemap to be dynamically baked while you edit your
scene, you can set the Reflection Probe Type to Baked, open the Lighting window
(the Assets | Lighting menu), access the Scene section, and check the Continuous
Baking option as shown. Please note that this mode won't include dynamic objects in
the reflection, so be sure to set System 3 Custom | Spheres and System 3 Custom |
MainSphere as Reflection Probe Static.

How it works...
The Reflection Probes element act like omnidirectional cameras that render Cubemaps and
apply them onto the objects within their constraints. When creating Reflection Probes, it's
important to be aware of how the different types work:

 f Real-time Reflection Probes: Cubemaps are updated at runtime. The real-time
Reflection Probes have three different Refresh Modes: On Awake (Cubemap is baked
once, right before the scene starts); Every frame (Cubemap is constantly updated);
Via scripting (Cubemap is updated whenever the RenderProbe function is used).

Chapter 6

237

Since Cubemaps feature six sides, the Reflection Probes features Time Slicing, so
each side can be updated independently. There are three different types of Time
Slicing: All Faces at Once (renders all faces at once and calculates mipmaps over
6 frames. Updates the probe in 9 frames); Individual Faces (each face is rendered
over a number of frames. It updates the probe in 14 frames. The results can be a bit
inaccurate, but it is the least expensive solution in terms of frame-rate impact); No
Time Slicing (The Probe is rendered and mipmaps are calculated in one frame. It
provides high accuracy, but it also the most expensive in terms of frame-rate).

 f Baked: Cubemaps are baked during editing the screen. Cubemaps can be either
manually or automatically updated, depending whether the Continuous Baking
option is checked (it can be found at the Scene section of the Lighting window).

 f Custom: The Custom Reflection Probes can be either manually baked from the
scene (and even include Dynamic objects), or created from a premade Cubemap.

There's more...
There are a number of additional settings that can be tweaked, such as Importance,
Intensity, Box Projection, Resolution, HDR, and so on. For a complete view on each of these
settings, we strongly recommend that you read Unity's documentation on the subject, which is
available at http://docs.unity3d.com/Manual/class-ReflectionProbe.html.

Setting up an environment with Procedural
Skybox and Directional Light

Besides the traditional 6 Sided and Cubemap, Unity now features a third type of skybox:
the Procedural Skybox. Easy to create and setup, the Procedural Skybox can be used in
conjunction with a Directional Light to provide Environment Lighting to your scene. In this
recipe, we will learn about different parameters of the Procedural Skybox.

Getting ready
For this recipe, you will need to import Unity's Standard Assets Effects package, which you
should have installed when installing Unity.

How to do it...
To set up an Environment Lighting using the Procedural Skybox and Directional Light, follow
these steps:

1. Create a new scene inside a Unity project. Observe that a new scene already includes
two objects: the Main Camera and a Directional Light.

http://docs.unity3d.com/Manual/class-ReflectionProbe.html

Lights and Effects

238

2. Add some cubes to your scene, including one at Position X: 0; Y: 0; Z: 0 scaled to
X: 20; Y: 1; Z: 20, which is to be used as the ground, as shown:

3. Using the Create drop-down menu from the Project view, create a new Material and
name it MySkybox. From the Inspector view, use the appropriate drop-down menu
to change the Shader of MySkybox from Standard to Skybox/Procedural.

4. Open the Lighting window (menu Window | Lighting), access the Scene section. At
the Environment Lighting subsection, populate the Skybox slot with the MySkybox
material, and the Sun slot with the Directional Light from the Scene.

5. From the Project view, select MySkybox. Then, from the Inspector view, set Sun size
as 0.05 and Atmosphere Thickness as 1.4. Experiment by changing the Sky Tint
color to RGB: 148; 128; 128, and the Ground color to a value that resembles the
scene cube floor's color (such as RGB: 202; 202; 202). If you feel the scene is too
bright, try bringing the Exposure level down to 0.85, shown as follows:

Chapter 6

239

6. Select the Directional Light and change its Rotation to X: 5; Y: 170; Z: 0.
Note that the scene should resemble a dawning environment, something like the
following scene:

7. Let's make things even more interesting. Using the Create drop-down menu in the
Project view, create a new C# Script named RotateLight. Open your script and
replace everything with the following code:
using UnityEngine;
using System.Collections;
public class RotateLight : MonoBehaviour {
 public float speed = -1.0f;
 void Update () {
 transform.Rotate(Vector3.right * speed * Time.deltaTime);
 }
}

Lights and Effects

240

8. Save it and add it as a component to the Directional Light.

9. Import the Effects Assets package into your project (via the Assets | Import
Package | Effects menu).

10. Select the Directional Light. Then, from Inspector view, Light component, populate
the Flare slot with the Sun flare.

11. From the Scene section of the Lighting window, find the Other Settings subsection.
Then, set Flare Fade Speed as 3 and Flare Strength as 0.5, shown as follows:

12. Play the scene. You will see the sun rising and the Skybox colors changing accordingly.

How it works...
Ultimately, the appearance of Unity's native Procedural Skyboxes depends on the five
parameters that make them up:

 f Sun size: The size of the bright yellow sun that is drawn onto the skybox is located
according to the Directional Light's Rotation on the X and Y axes.

Chapter 6

241

 f Atmosphere Thickness: This simulates how dense the atmosphere is for this skybox.
Lower values (less than 1.0) are good for simulating the outer space settings.
Moderate values (around 1.0) are suitable for the earth-based environments. Values
that are slightly above 1.0 can be useful when simulating air pollution and other
dramatic settings. Exaggerated values (like more than 2.0) can help to illustrate
extreme conditions or even alien settings.

 f Sky Tint: It is the color that is used to tint the skybox. It is useful for fine-tuning or
creating stylized environments.

 f Ground: This is the color of the ground. It can really affect the Global Illumination
of the scene. So, choose a value that is close to the level's terrain and/or geometry
(or a neutral one).

 f Exposure: This determines the amount of light that gets in the skybox. The higher
levels simulate overexposure, while the lower values simulate underexposure.

It is important to notice that the Skybox appearance will respond to the scene's Directional
Light, playing the role of the Sun. In this case, rotating the light around its X axis can create
dawn and sunset scenarios, whereas rotating it around its Y axis will change the position of
the sun, changing the cardinal points of the scene.

Also, regarding the Environment Lighting, note that although we have used the Skybox as the
Ambient Source, we could have chosen a Gradient or a single Color instead—in which case,
the scene's illumination wouldn't be attached to the Skybox appearance.

Finally, also regarding the Environment Lighting, please note that we have set the Ambient
GI to Realtime. The reason for this was to allow the real-time changes in the GI, promoted
by the rotating Directional Light. In case we didn't need these changes at runtime, we could
have chosen the Baked alternative.

Lighting a simple scene with Lightmaps and
Light Probes

Lightmaps are a great alternative to real-time lighting, as they can provide the desired look
to an environment without being processor-intensive. There is one downside, though—since
there is no way of baking Lightmaps onto the dynamic objects, the lighting of the important
elements of the game (such as player characters themselves) can look artificial, failing to
match the intensity of the surrounding area. The solution? Light Probes.

Lights and Effects

242

Light Probes work by sampling the light intensity over the location that they are placed at.
Dynamic objects, once Light Probe-enabled, will be lit according to the interpolation of the
nearest probes around them.

Getting ready
For this recipe, we have prepared a basic scene, including a simple game environment and
an instance of Unity's Rollerball sample asset, which will be used as the player character.
The geometry for the scene was created using ProBuilder 2.0, an extension developed
by ProCore, and was sold at Unity's Asset Store and at ProCore's website (http://www.
protoolsforunity3d.com). ProBuilder is a fantastic level design tool that speeds up the
design process considerably for both simple and complex level design.

The LightProbes.unitypackage package, containing the scene and all necessary files,
can be found inside the 1362_06_06 folder.

http://www.protoolsforunity3d.com
http://www.protoolsforunity3d.com

Chapter 6

243

How to do it...
To reflect the surrounding objects using the Reflection Probes, follow these steps:

1. Import LightProbes.unitypackage to a new project. Then, open the scene
named LightProbes. The scene features a basic environment and a playable
Rollerball game sequence.

2. First, let's set up the light from our scene. From the Hierarchy view, select the
Directional Light. Then, from the Inspector view, set Baking as Baked. Also, at the
top of the Inspector, to the right of the object's name, check the Static box, shown
as follows:

3. Now, let's set up the Global Illumination for the scene. Open the Lighting window
(via the menu Window | Lighting) and select the Scene section. Then, from the
Environment Lighting subsection, set SkyboxProbes (available from the Assets)
as Skybox, and the scene's Directional Light as Sun. Finally, change the Ambient GI
option from Realtime to Baked, as shown in the following screenshot:

Lights and Effects

244

4. Lightmaps can be applied onto static objects only. From the Hierarchy view, expand
the Level game object to reveal the list of the children objects. Then, select every
child and set them as Static, as shown:

5. Imported 3D meshes must feature Lightmap UV Coordinates. From the Project view,
find and select the lamp mesh. Then, from the Inspector view, within the Model
section of the Import Settings, check the Generate Lightmap UVs option, and
click on the Apply button to confirm changes, shown as follows:

Chapter 6

245

6. Scroll down the Import Settings view and expand the lamp's Material component.
Then, populate the Emission field with the texture named lamp_EMI, available from
the Assets folder. Finally, change the Global Illumination option to Baked. This will
make the lamp object emit a green light that will be baked into the Lightmap.

7. Open the Lighting window. By default, the Continuous Baking option will be
checked. Uncheck it, as shown, so that we can bake the Lightmaps on demand.

8. Click on the Build button and wait for the Lightmaps to be generated.

Lights and Effects

246

9. From the Hierarchy view, select the RollerBall. Then, from the Inspector view, find
the Mesh Renderer component and check the Use Light Probes option, as shown:

10. Now, we need to create the Light Probes for the scene. From the Hierarchy view,
click on the Create drop-down menu and add a Light Probe Group to the scene
(Create | Light | Light Probe Group).

11. To facilitate the manipulation of the probes, type Probe into the search field of the
Hierarchy view. This will isolate the newly created Light Probe Group, making it the
only editable object on the scene.

Chapter 6

247

12. Change your viewport layout to 4 Split by navigating to Window | Layouts | 4 Split.
Then, set viewports as Top, Front, Right, and Persp. Optionally, change Top, Front
and Right views to the Wireframe mode. Finally, make sure that they are set to
orthographic view, as shown in the following screenshot. This will make it easier for
you to position the Light Probes.

Lights and Effects

248

13. Position the initial Light Probes at the corners of the top room of the level. To move
the Probes around, simply click and drag them, as shown:

Chapter 6

249

14. Select the four probes to the left side of the tunnel's entrance. Then, duplicate them
by clicking on the appropriate button on the Inspector view or, alternatively, use the
Ctrl/Cmd + D keys. Finally, drag the new probes slightly to the right, to a point that
they are no longer over the shadow that is projected by the wall, shown as follows:

Lights and Effects

250

15. Repeat the last step, this time duplicating the probes next to the tunnel's entrance
and bringing them inward towards the group. To delete the selected probes, either
use the respective button on the Light Probe Group component, or use the
Ctrl/Cmd + Backspace keys.

16. Duplicate and reposition the four probes that are nearest to the tunnel, repeating the
operation five times and conforming each duplicate set to the shadow, projected by
the tunnel.

Chapter 6

251

17. Use the Add Probe button to place the three probes over well-lit areas of the scene.

18. Now, add Light Probes within the shadow that is projected by the L-shaped wall.

Lights and Effects

252

19. Since the Rollerball is able to jump, place the higher probes even higher, so that they
will sample the lighting above the shadowed areas of the scene.

20. Placing too many Light Probes on a scene might be memory intensive. Try optimizing
the Light Probes Group by removing the probes from the regions that the player won't
have access to. Also, avoid overcrowding the regions of continuous lighting conditions
by removing the probes that are too close to others in the same lighting condition.

Chapter 6

253

21. To check out which Light Probes are influencing the Rollerball at any place, move the
Rollerball GameObject around the scene. A polyhedron will indicate which probes are
being interpolated at that position, as shown:

22. From the bottom of the Lighting window, click on the Build button and wait for the
Lightmaps to be baked.

Lights and Effects

254

23. Test the scene. The Rollerball will be lit according to the Light Probes.

24. Keep adding probes until the level is completely covered.

How it works...
Lighmaps are basically texture maps including scene lights/shadows, global illumination,
indirect illumination, and objects featuring the Emissive materials. They can be generated
automatically or on demand by Unity's lighting engine. However, there are some points that
you should pay attention to, such as:

 f Set all the non-moving objects and lights to be baked as Static

 f Set the game lights as Baked

 f Set the scene's Ambient GI as Baked

 f Set the Global Illumination option of the emissive materials as Baked

 f Generate Light UVs for all 3D meshes (specially the imported ones)

 f Either Build the Lightmaps manually from the Lighting window, or set the
Continuous Baking option checked

Chapter 6

255

Light Probes work by sampling the scene's illumination at the point that they're placed at.
A dynamic object that has Use Light Probes enabled has its lighting determined by the
interpolation between the lighting values of the four Light Probes defining a volume around
it (or, in case there are no probes suited to define a volume around the dynamic object,
a triangulation between the nearest probes is used).

It is important to notice that even if you are working on a level that is flat, you shouldn't
place all your probes on the same level, as Light Probe Groups will form a volume in order
to the interpolation to be calculated correctly. This and more information on the subject
can be found in the Unity's documentation at http://docs.unity3d.com/Manual/
LightProbes.html.

There's more...
In case you can spare some processing power, you can exchange the use of Light probes for a
Mixed light. Just delete the Light Probe Group from your scene, select the Directional Light
and, from the Light component, change Baking to Mixed. Then, set Shadow Type as Soft
Shadows and Strength as 0.5, as shown in the following screen. Finally, click on the Build
button and wait for the Lightmaps to be baked. The real-time light/shadows will be cast into/
from the dynamic objects, such as Rollerball.

http://docs.unity3d.com/Manual/LightProbes.html
http://docs.unity3d.com/Manual/LightProbes.html

Lights and Effects

256

Conclusion
This chapter aimed to present you with some of the Unity's new features in lighting, and
occasionally teaches you a few tricks with lights and effects. By now, you should be familiar
with some of the concepts introduced by Unity 5, comfortable with a variety of techniques,
and, hopefully, willing to explore some of the functionalities discussed throughout the
recipes deeper.

As always, Unity's documentation on the subject is excellent, so we encourage you to go back
to the recipes and follow the provided URLs.

Chapter 7

257

7
Controlling 3D

Animations

In this chapter, we will cover:

 f Configuring a character's Avatar and idle animation

 f Moving your character with root motion and Blend Trees

 f Mixing animations with Layers and Masks

 f Organizing States into Sub-State Machines

 f Transforming the Character Controller via script

 f Adding rigid props to animated characters

 f Using Animation Events to throw an object

 f Applying Ragdoll physics to a character

 f Rotating the character's torso to aim a weapon

Controlling 3D Animations

258

Introduction
The Mecanim animation system has revolutionized how characters are animated and
controlled within Unity. In this chapter, we will learn how to take advantage of its flexibility,
power, and friendly and highly visual interface.

The big picture
Controlling a playable character with the Mecanim System might look like a complex task, but
it is actually very straightforward.

Hopefully, by the end of the chapter, you will have gained at least a basic understanding of
the Mecanim system. For a more complete overview of the subject, consider taking a look at
Jamie Dean's Unity Character Animation with Mecanim, also published by Packt Publishing.

An additional note—all the recipes will make use of Mixamo motion packs. Mixamo is a
complete solution for character production, rigging, and animation. In fact, the character in
use was designed with Mixamo's character creation software called Fuse, and rigged with the
Mixamo Auto-rigger. You can find out more about Mixamo and their products at Unity's Asset
Store (https://www.assetstore.unity3d.com/en/#!/publisher/150) or their
website at https://www.mixamo.com/.

https://www.assetstore.unity3d.com/en/#!/publisher/150
https://www.mixamo.com/

Chapter 7

259

Please note that although Mixamo offers Mecanim-ready characters and animation clips, we
will use, for the recipes in this chapter, unprepared animation clips. The reason is to make you
more confident when dealing with assets obtained by other methods and sources.

Configuring a character's Avatar and idle
animation

A feature that makes Mecanim so flexible and powerful is the ability of quickly reassigning
animation clips from one character to another. This is made possible through the use of
Avatars, which are basically a layer between your character's original rig and the Unity's
Animator system.

In this recipe, we will learn how to configure an Avatar skeleton on a rigged character.

Getting ready
For this recipe, you will need the MsLaser@T-Pose.fbx and Swat@rifle_aiming_idle.
fbx files, which are contained inside the 1362_07_code/character_and_clips/ folder.

How to do it...
To configure an Avatar skeleton, follow these steps:

1. Import the MsLaser@T-Pose.fbx and Swat@rifle_aiming_idle.fbx files to
your project.

2. Select from the Project view, the MsLaser@T-Pose model.

3. In the Inspector view, under MsLaser@T-Pose Import Settings, activate the Rig
section. Change Animation Type to Humanoid. Then, leave Avatar Definition as
Create From this Model. Finally, click on the Configure… button.

Controlling 3D Animations

260

4. Inspector view will show the newly created Avatar. Observe how Unity correctly
mapped the bones of our character into its structure, assigning, for instance, the
mixamoRig:LeftForeArm bone as the Avatar's Lower Arm. We could, of course,
reassign bones if needed. For now, just click on the Done button to close the view.

5. Now that we have our Avatar ready, let's configure our animation for the Idle state.
From the Project view, select the Swat@rifle_aiming_idle file.

Chapter 7

261

6. Activate the Rig section, change Animation Type to Humanoid and Avatar Definition
to Create From This Model. Confirm by clicking on Apply.

7. Activate the Animations section (to the right of the Rig). Select the rifle_aiming_idle
clip (from the Clips list). The Preview area (at the bottom of the Inspector) will display
the message as No model is available for preview. Please drag a model into this
Preview area. Drag MsLaser@T-Pose to the Preview area to correct this.

Controlling 3D Animations

262

8. With rifle_aiming_idle selected from the Clips list, check the Loop Time and Loop
Pose options. Also, click on the Clamp Range button to adjust the timeline to the
actual time of the animation clip. Then, under Root Transform Rotation, check Bake
Into Pose, and select Baked Upon | Original. Under Root Transform Position (Y),
check Bake Into Pose, and select Baked upon (at Start) | Original. Under Root
Transform Position (XZ), leave Bake Into Pose unchecked, and select Baked Upon
(at Start) | Center of Mass. Finally, click on Apply to confirm the changes.

9. In order to access animation clips and play them, we need to create a controller. Do
this by clicking on the Create button from the Project view, and then selecting the
Animator Controller option. Name it as MainCharacter.

Chapter 7

263

10. Double-click on the Animator Controller to open the Animator view.

11. From the Animator view, right-click on the grid to open a context menu. Then, select
the Create State | Empty option. A new box named New State will appear. It will be
in orange, indicating that it is the default state.

12. Select New State and, in the Inspector view, change its name to Idle. Also, in the
Motion field, choose rifle_aiming_idle by either selecting it from the list or dragging it
from the Project view.

13. Drag the MsLaser@T-Pose model from the Project view into the Hierarchy view and
place it on the scene.

Controlling 3D Animations

264

14. Select MsLaser@T-Pose from the Hierarchy view and observe its Animator
component in the Inspector view. Then, assign the newly created MainCharacter
controller to its Controller field.

15. Play your scene to see the character correctly animated.

How it works...
Preparing our character for animation took many steps. First, we created its Avatar, based
on the character model's original bone structure. Then, we set up the animation clip (which,
as the character mesh, is stored in a .fbx file), using its own Avatar. After this, we adjusted
the animation clip, clamping its size and making it a loop. We also baked its Root Transform
Rotation to obey the original file's orientation. Finally, an Animator Controller was created,
and the edited animation clip was made into its default Animation state.

The concept of the Avatar is what makes Mecanim so flexible. Once you have a Controller,
you can apply it to other humanoid characters, as long as they have an Avatar body mask.
If you want to try it yourself, import mascot.fbx, which is also available inside the
charater_and_clips folder, apply steps 3 and 4 into this character, place it on the scene,
and apply MainCharacter as its Controller in the Animator component. Then, play the scene
to see the mascot playing the rifle_aiming_idle animation clip.

There's more...
To read more information about the Animator Controller, check out Unity's documentation at
http://docs.unity3d.com/Manual/class-AnimatorController.html.

http://docs.unity3d.com/Manual/class-AnimatorController.html

Chapter 7

265

Moving your character with root motion and
Blend Trees

The Mecanim animation system is capable of applying Root Motion to characters. In other
words, it actually moves the character according to the animation clip, as opposed to
arbitrarily translating the character model while playing an in-place animation cycle. This
makes most of the Mixamo animation clips perfect for use with Mecanim.

Another feature of the animation system is Blend Trees, which can blend animation clips
smoothly and easily. In this recipe, we will take advantage of these features to make our
character walk/run forward and backwards, and also strafe right and left at different speeds.

Getting ready
For this recipe, we have prepared a Unity package named Character_02, containing a
character and featuring a basic Animator Controller. The package can be found inside the
1362_07_02 folder, along with the .fbx files for the necessary animation clips.

How to do it...
To apply the Root Motion to your character using Blend Trees, follow these steps:

1. Import Character_02.unityPackage into a new project. Also, import
Swat@rifle_run, Swat@run_backwards, Swat@strafe, Swat@strafe_2,
Swat@strafe_left, Swat@strafe_right, Swat@walking, and Swat@
walking_backwards .fbx files.

2. We need to configure our animation clips. From the Project view, select
Swat@rifle_run.

3. Activate the Rig section. Change Animation Type to Humanoid and Avatar Definition
to Create From this Model. Confirm by clicking on Apply.

Controlling 3D Animations

266

4. Now, activate the Animations section (to the right of Rig). Select the rifle_run clip
(from the Clips list). The Preview area (at the bottom of the Inspector view) will
display the message as No model is available for preview. Please drag a model into
this Preview area. Drag MsLaser@T-Pose onto the Preview area to correct this.

5. With rifle_run selected from the Clips list, select the rifle_run clip (from the Clips list)
and check the Loop Time and Loop Pose options. Also, click on the Clamp Range
button to adjust the timeline to the actual time of the animation clip.

6. Then, under Root Transform Rotation, check Bake Into Pose, and select Baked
Upon (at Start) | Original. Under Root Transform Position (Y), check Bake Into
Pose, and select Baked Upon | Original. Under Root Transform Position (XZ), leave
Bake Into Pose unchecked, and select Baked Upon (at Start) | Center of Mass.
Finally, click on Apply to confirm the changes.

7. Repeat steps 3 to 6 for each one of the following animation clips:
Swat@run_backwards, Swat@strafe, Swat@strafe_2, Swat@strafe_left,
Swat@strafe_right, Swat@walking, and Swat@walking_backwards.

Chapter 7

267

8. From the Project view, select the MsLaser prefab and drag it onto the Hierarchy
view, placing it on the scene.

9. From the Hierarchy view, select the MsLaser GameObject and attach a Character
Controller component to it (menu Component | Physics | Character Controller).
Then, set its Skin Width as 0.0001, and its Center as X: 0, Y: 0.9, Z: 0; also change
its Radius to 0.34 and its Height to 1.79.

10. In the Project view, open the MainCharacter controller.

11. In the top-left corner of the Animator view, activate the Parameters section and
use the + sign to create three new Parameters (Float) named xSpeed, zSpeed,
and Speed.

12. We do have an Idle state for our character, but we need the new ones. Right-click on
the gridded area and, from the context menu, navigate to Create State | From New
Blend Tree. Change its name, from the Inspector view, to Move.

Controlling 3D Animations

268

13. Double-click on the Move state. You will see the empty blend tree that you have
created. Select it and, in the Inspector view, rename it to Move. Then, change its
Blend Type to 2D Freeform Directional, also setting xSpeed and zSpeed in the
Parameters tab. Finally, using the + sign from the bottom of the Motion list, add
nine new Motion Fields.

14. Now, populate the Motion list with the following motion clips and respective Pos
X and Pos Y values: run_backwards, 0, -1; walking_backwards, 0,-0.5; rifle_
aiming_idle, 0, 0; walking, 0, 0.5; rifle_run, 0, 1; strafe, -1, 0; strafe_left, -0.5, 0;
strafe_right, 0.5, 0; strafe_2, 1, 0. You can populate the Motion list by selecting it
from the list or, if there are more than one clip with the same name, you can drag it
from the Project view onto the slot (by expanding the appropriate model icon).

Chapter 7

269

15. Double-click on the gridded area to go from the Move blend tree back to the
Base Layer.

16. Since we have the rifle_aiming_idle Motion clip within our Move blend tree,
we can get rid of the original Idle state. Right-click on the Idle state box and, from
the menu, select Delete. The Move blend state will become the new default state,
turning orange.

Controlling 3D Animations

270

17. Now, we must create the script that will actually transform the player's input into
those variables that are created to control the animation.

18. From the Project view, create a new C# Script and name it as BasicController.

19. Open your script and replace everything with the following code:
using UnityEngine;
using System.Collections;

public class BasicController: MonoBehaviour {
 private Animator anim;
 private CharacterController controller;
 public float transitionTime = .25f;
 private float speedLimit = 1.0f;
 public bool moveDiagonally = true;
 public bool mouseRotate = true;
 public bool keyboardRotate = false;

 void Start () {
 controller = GetComponent<CharacterController>();
 anim = GetComponent<Animator>();
 }

 void Update () {
 if(controller.isGrounded){
 if (Input.GetKey (KeyCode.RightShift) ||Input.GetKey
(KeyCode.LeftShift))
 speedLimit = 0.5f;
 else
 speedLimit = 1.0f;

 float h = Input.GetAxis("Horizontal");
 float v = Input.GetAxis("Vertical");
 float xSpeed = h * speedLimit;
 float zSpeed = v * speedLimit;
 float speed = Mathf.Sqrt(h*h+v*v);

 if(v!=0 && !moveDiagonally)

Chapter 7

271

 xSpeed = 0;

 if(v!=0 && keyboardRotate)
 this.transform.Rotate(Vector3.up * h, Space.World);

 if(mouseRotate)
 this.transform.Rotate(Vector3.up * (Input.GetAxis("Mouse
X")) * Mathf.Sign(v), Space.World);

 anim.SetFloat("zSpeed", zSpeed, transitionTime, Time.
deltaTime);
 anim.SetFloat("xSpeed", xSpeed, transitionTime, Time.
deltaTime);
 anim.SetFloat("Speed", speed, transitionTime, Time.
deltaTime);
 }
 }
}

20. Save your script and attach it to the MsLaser GameObject in the Hierarchy view.
Then, add Plane (menu option GameObject | 3D Object | Plane) and place it
beneath the character.

21. Play your scene and test the game. You will be able to control your character with the
arrow keys (or WASD keys). Keeping the Shift key pressed will slow it down.

How it works...
Whenever the BasicController script detects any directional keys in use, it sets the
Speed variable of the Animator state to a value higher than 0, changing the Animator state
from Idle to Move. The Move state, in its turn, blends the motion clips that it was populated
with, according to the input values for xSpeed (obtained from Horizontal Axis input, typically
A and D keys) and zSpeed (obtained from Vertical Axis input, typically W and S keys). Since
Mecanim is capable of applying root motion to the characters, our character will actually move
in the resulting direction.

Controlling 3D Animations

272

For instance, if W and D keys are pressed, xSpeed and zSpeed values will rise to 1.0. From
the Inspector view, it is possible to see that such combination will result in a blend between the
motion clips called rifle_run and strafe_2, making the character run diagonally (front + right).

Our BasicController includes three checkboxes for more options: Move Diagonally—set
as true, by default, which allows for blends between forward/backward and left/right clips;
Mouse Rotate—set as true, by default, which allows for rotating the character with the mouse,
changing their direction while moving; Keyboard Rotate—set as false, by default, which allows
for rotating the character through simultaneous use of left/right and forward/backwards
directional keys.

Chapter 7

273

There's more...
Our blend tree used the 2D Freeform Directional Blend Type. However, if we had only four
animation clips (forward, backwards, left, and right), 2D Simple Directional would have been
a better option. Learn more on the following links:

 f Learn more about Blend Trees and 2D blending from Unity's Documentation at:
http://docs.unity3d.com/Manual/BlendTree-2DBlending.html.

 f Also, if you want to learn more about Mecanim Animation System, there are
some links that you might want to check out, such as Unity's documentation at:
http://docs.unity3d.com/Manual/AnimationOverview.html.

 f Mecanim Example Scenes are available at Unity Asset Store at:
https://www.assetstore.unity3d.com/en/#!/content/5328.

 f Mecanim Video Tutorial are available at: http://unity3d.com/pt/learn/
tutorials/topics/animation.

Mixing animations with Layers and Masks
Mixing animations is a great way of adding complexity to your animated characters without
requiring a vast number of animated clips. Using Layers and Masks, we can combine different
animations by playing specific clips for the specific body parts of the character. In this recipe,
we will apply this technique to our animated character, triggering animation clips for firing a
rifle, and throwing a grenade with the character's upper body. We will do this while keeping the
lower body moving or idle, according to the player's input.

Getting ready
For this recipe, we have prepared a Unity Package named Mixing, containing a basic scene
that features an animated character. The package can be found inside the 1362_07_03
folder, along with the animation clips called Swat@firing_rifle.fbx and Swat@toss_
grenade.fbx.

http://docs.unity3d.com/Manual/BlendTree-2DBlending.html
http://docs.unity3d.com/Manual/AnimationOverview.html
https://www.assetstore.unity3d.com/en/#!/content/5328
http://unity3d.com/pt/learn/tutorials/topics/animation
http://unity3d.com/pt/learn/tutorials/topics/animation

Controlling 3D Animations

274

How to do it...
To mix animations using layers and masks, follow these steps:

1. Create a new project and import the Mixing Unity Package. Then, from the Project
view, open the mecanimPlayground level.

2. Import the Swat@firing_rifle.fbx and Swat@toss_grenade.fbx files to
the project.

3. We need to configure the animation clips. From the Project view, select the
Swat@firing_rifle animation clip.

4. Activate the Rig section. Change Animation Type to Humanoid, and Avatar
Definition to Create From this Model. Confirm this by clicking on Apply.

5. Now, activate the Animations section. Select the firing_rifle clip (from the Clips list),
click on the Clamp Range button to adjust the timeline, and check the Loop Time
and Loop Pose options. Under Root Transform Rotation, check Bake Into Pose, and
select Baked Upon | Original. Under Root Transform Position (Y), check Bake Into
Pose, and select Baked Upon (at Start) | Original. Under Root Transform Position
(XZ), leave Bake Into Pose unchecked. Click on Apply to confirm the changes.

Chapter 7

275

6. Select the Swat@toss_grenade animation clip. Activate the Rig section. Then,
change Animation Type to Humanoid, and Avatar Definition to Create From this
Model. Confirm it by clicking on Apply.

Controlling 3D Animations

276

7. Now, activate the Animations section. Select the toss_grenade clip (from the Clips
list), click on the button Clamp Range to adjust the timeline, and leave the Loop
Time and Loop Pose options unchecked. Under Root Transform Rotation, check
Bake Into Pose, and select Baked Upon (at Start) | Original. Under Root Transform
Position (Y), check Bake Into Pose, and select Baked Upon (at Start) | Original).
Under Root Transform Position (XZ), leave Bake Into Pose unchecked. Click on
Apply to confirm the changes.

8. Let's create a Mask. From the Project view, click on the Create button and add an
Avatar Mask to the project. Name it as BodyMask.

9. Select the BodyMask tab and, in the Inspector view, expand the Humanoid section
to unselect the character's legs, base, and IK spots, turning their outline red.

Chapter 7

277

10. From the Hierarchy view, select the MsLaser character. Then, from the Animator
component in the Inspector view, double-click on the MainCharacter controller to
open it.

11. In the Animator view, create a new layer by clicking on the + sign at the top-left
Layers tab, above the Base Layer.

12. Name the new layer as UpperBody and click on the gear icon for the settings. Then,
change its Weight to 1, and select the BodyMask in the Mask slot. Also, change
Blending to Additive.

13. Now, in the Animator view, with the UpperBody layer selected, create three new
empty states (by right-clicking on the gridded area and navigating to, from the menu,
Create State | Empty). Name the default (orange) state null, and the other two as
Fire and Grenade.

14. Now, access the Parameters tab and add two new parameters of the Boolean type:
Fire and Grenade.

Controlling 3D Animations

278

15. Select the Fire state and, in the Inspector view, add the firing_rifle animation clip to
the Motion field.

16. Now, select the Grenade state and, in the Inspector view, add the toss_grenade
animation clip to the Motion field.

17. Right-click on the null state box and, from the menu, select Make Transition. Then,
drag the white arrow onto the Fire box.

18. Select the arrow (it will turn blue). From the Inspector view, uncheck the Has Exit
Time option. Then, access the Conditions list, click on the + sign to add a new
condition, and set it as Fire and true.

Chapter 7

279

19. Now, make a transition from null to Grenade. Select the arrow (it will turn blue). From
the Inspector view, uncheck the Has Exit Time option. Then, access the Conditions
list, click on the + sign to add a new condition, and set it as Grenade and true.

20. Now, create transitions from Fire to null, and from Grenade to null. Then, select the
arrow that goes from Fire to null and, in the Conditions box, select the Fire and false
options. Leave the Has Exit Time option checked.

21. Finally, select the arrow that goes from Grenade to null. In the Conditions box, select
the options Grenade, false. Leave the Has Exit Time option checked.

22. From the Hierarchy view, select the MsLaser character. Locate, in the Inspector view,
the Basic Controller component and open its script.

23. Immediately before the end of the Update() function, add the following code:
 if(Input.GetKeyDown(KeyCode.F)){
 anim.SetBool("Grenade", true);
 } else {
 anim.SetBool("Grenade", false);
 }
 if(Input.GetButtonDown("Fire1")){
 anim.SetBool("Fire", true);

Controlling 3D Animations

280

 }
 if(Input.GetButtonUp("Fire1")){
 anim.SetBool("Fire", false);
 }

24. Save the script and play your scene. You will be able to trigger the firing_rifle and
toss_grenade animations by clicking on the fire button and pressing the F key.
Observe how the character's legs still respond to the Move animation state.

How it works...
Once the Avatar mask is created, it can be used as a way of filtering the body parts that would
actually play the animation states of a particular layer. In our case, we have constrained our
fire_rifle and toss_grenade animation clips to the upper body of our character, leaving the
lower body free to play the movement-related animation clips, such as walking, running,
and strafing.

There's more...
You might have noticed that the UpperBody layer has a parameter named Blending, which
we have set to Additive. This means that animation states in this layer will be added to the
ones from the lower layers. If changed to Override, the animation from this would override
animation states from the lower layers when played. In our case, Additive helped in keeping
the aim stable when firing while running.

For more information on Animation Layers and Avatar Body Masks, check out Unity's
documentation at http://docs.unity3d.com/Manual/AnimationLayers.html and
http://docs.unity3d.com/Manual/class-AvatarMask.html.

Organizing States into Sub-state Machines
Whenever the Animator area gets too cluttered, you can always think of organizing your
Animation States into Sub-State Machines. In this recipe, we will use this technique to
organize animation states for turning the character. Also, since the provided animation clips
do not include Root Motion, we will use the opportunity to illustrate how to overcome the lack
of Root Motion via script, using it to turn the character 45 degrees to the left and right.

http://docs.unity3d.com/Manual/AnimationLayers.html
http://www.docs.unity3d.com/Manual/class-AvatarBodyMask.html

Chapter 7

281

Getting ready
For this recipe, we have prepared a Unity Package named Turning, containing a basic scene
that features an animated character. The package can be found inside the 1362_07_04
folder, along with animation clips called Swat@turn_right_45_degrees.fbx and
Swat@turn_left.fbx.

How to do it...
To apply Root Motion via script, please follow these steps:

1. Create a new project and import the Turning Unity Package. Then, from the Project
view, open the mecanimPlayground level.

2. Import the Swat@turn_right_45_degrees.fbx and Swat@turn_left.fbx
files in the project.

3. We need to configure our animation clips. Select the Swat@turn_left file from the
Project view.

4. Activate the Rig section. Change Animation Type to Humanoid, and Avatar
Definition to Create From this Model. Confirm by clicking on Apply.

Controlling 3D Animations

282

5. Now, activate the Animations section. Select the turn_left clip (from the Clips list), click
on the Clamp Range button to adjust the timeline, and check the Loop Time option.
Under Root Transform Rotation, check Bake Into Pose, and navigate to Baked Upon
(at Start) | Original. Under Root Transform Position (Y), check Bake Into Pose, and
select Baked Upon (at Start) | Original. Under Root Transform Position (XZ), leave
Bake Into Pose unchecked. Click on Apply to confirm the changes.

6. Repeat steps 4 and 5 for Swat@turning_right_45_degrees.

Chapter 7

283

7. From the Hierarchy view, select the MsLaser character. Then, from the Animator
component in the Inspector view, open the MainCharacter controller.

8. From the top-left corner of the Animator view, activate the Parameters section and
use the + sign to create the two new Parameters (Boolean) named TurnLeft and
TurnRight.

9. Right-click on the gridded area. From the context menu, select Create Sub-State
Machine. From the Inspector view, rename it Turn.

10. Double-click on the Turn sub-state machine. Right-click on the gridded area, select
Create State | Empty, and add a new state. Rename it to Turn Left. Then, add
another state named Turn Right.

11. From the Inspector view, populate Turn Left with the turn_left motion clip. Then,
populate Turn Right with turning_right_45_degrees.

Controlling 3D Animations

284

12. Get out of the Turn sub-state machine back into the Base Layer. By right-clicking on
each state and selecting the option Make Transition, create transitions between
Move and Turn Left, and Move and Turn Right.

13. Enter the Turn sub-state machine. Then, create transitions from Turn Left and Turn
Right into the Move state.

14. Select the arrow that goes form Turn Right to (Up) Base Layer. It will turn blue. From
the Inspector view, uncheck the Has Exit Time option. Then, access the Conditions
list, click the + sign to add a new condition, and set it as TurnRight and false.

Chapter 7

285

15. Select the arrow that goes from (Up) Base Layer to Turn Right. From the Inspector
view, uncheck the Has Exit Time option. Then, access the Conditions list, click the +
sign to add a new condition, and set it as TurnRight and true.

16. Repeat steps 14 and 15 with the arrows that go between (Up) Base Layer and Turn
Left, using TurnLeft as a condition, this time.

17. From the Hierarchy view, select the MsLaser character. Then, from the Inspector
view, open the script from the BasicController component.

18. Immediately after the if(controller.isGrounded){ line, add:
if(Input.GetKey(KeyCode.Q)){
 anim.SetBool("TurnLeft", true);
 transform.Rotate(Vector3.up * (Time.deltaTime * -45.0f),
Space.World);
} else {
 anim.SetBool("TurnLeft", false);
}
if(Input.GetKey(KeyCode.E)){
 anim.SetBool("TurnRight", true);
 transform.Rotate(Vector3.up * (Time.deltaTime * 45.0f), Space.
World);
} else {
 anim.SetBool("TurnRight", false);
}

19. Save your script. Then, select the MsLaser character and, from the Inspector view,
access the Basic Controller component. Leave the Move Diagonally and Mouse
Rotate options unchecked. Also, leave the Keyboard Rotate option checked. Finally,
play the scene. You will be able to turn left and right by using the Q and E keys,
respectively.

How it works...
As it should be clear from the recipe, the sub-state machines work in a similar way to groups
or folders, allowing you to encapsulate a series of state machines into a single entity for easier
reference. States from the sub-state machines can be transitioned from external states, in our
case, the Move state, or even from different sub-state machines.

Regarding the character's rotation, we have overcome the lack of root motion by using
the transform.Rotate(Vector3.up * (Time.deltaTime * -45.0f), Space.
World); command to make the character actually turn around when the Q and E
keys are being held down. This command was used in conjunction with animator.
SetBool("TurnLeft", true);, which triggers the right animation clip.

Controlling 3D Animations

286

Transforming the Character Controller
via script

Applying Root Motion to your character might be a very practical and accurate way to animate
it. However, every now and then, you might need to manually control one or two aspects of the
character movement. Perhaps you only have an in-place animation to work with, or maybe you
want the character's movement to be affected by other variables. In these cases, you will need
to override the root motion via script.

To illustrate this issue, this recipe makes use of an animation clip for jumping, which originally
moves the character only in the Y-axis. In order to make her move forward or backwards while
jumping, we will learn how to access the character's velocity to inform the jump's direction via
the script.

Getting ready
For this recipe, we have prepared a Unity Package named Jumping, containing a basic scene
that features an animated character. The package can be found inside the 1362_07_05
folder, along with the animation clip called Swat@rifle_jump.

How to do it...
To apply the Root Motion via script, please follow these steps:

1. Create a new project and import the Jumping Unity Package. Then, from the Project
view, open the mecanimPlayground level.

Chapter 7

287

2. Import the Swat@rifle_jump.fbx file to the project.

3. We need to configure our animation clip. From the Project view, select the
Swat@rifle_jump file.

4. Activate the Rig section. Change Animation Type to Humanoid, and Avatar
Definition to Create From this Model. Confirm this by clicking on Apply.

5. Now, activate the Animations section. Select the rifle_jump clip (from the Clips list),
click on the Clamp Range button to adjust the timeline, and check the Loop Time
and Loop Pose options. Under Root Transform Rotation, check Bake Into Pose, and
select Baked Upon (at Start) | Original. Under Root Transform Position (Y), leave
Bake into Pose unchecked, and select Baked Upon (at Start) | Original. Under Root
Transform Position (XZ), leave Bake Into Pose unchecked. Click on Apply to confirm
the changes.

Controlling 3D Animations

288

6. From the Hierarchy view, select the MsLaser character. Then, from the Animator
component in the Inspector view, open the MainCharacter controller.

7. From the top-left corner of the Animator view, activate the Parameters section, and
use the + sign to create a new Parameters (Boolean) named Jump.

8. Right-click on the gridded area and, from the context menu, select Create State |
Empty. Change its name, from the Inspector view, to Jump.

9. Select the Jump state. Then, from the Inspector view, populate it with the rifle_jump
Motion clip.

10. Find and right-click on the Any State. Then, selecting the Make Transition option,
create a transition from Any State to Jump. Select the transition, uncheck Has Exit
Time, and use the Jump variable as a condition (true).

Chapter 7

289

11. Now, create a transition from Jump to Move.

12. Configure the transitions between Jump and Move, leaving Has Exit Time checked,
and use the Jump variable as a condition (false).

Controlling 3D Animations

290

13. From the Hierarchy view, select the MsLaser character. Then, from the Inspector
view, open the script from the BasicController component.

14. Right before the Start() function, add the following code:
public float jumpHeight = 3f;
private float verticalSpeed = 0f;
private float xVelocity = 0f;
private float zVelocity = 0f;

15. Inside the Update() function, find the line containing the following code:
if(controller.isGrounded){

And add the following lines immediatly after it:
if (Input.GetKey (KeyCode.Space)) {
 anim.SetBool ("Jump", true);
 verticalSpeed = jumpHeight;
}

16. Finally, add a new function, following immediately before the final } of the code:
 void OnAnimatorMove(){
 Vector3 deltaPosition = anim.deltaPosition;
 if (controller.isGrounded) {
 xVelocity = controller.velocity.x;
 zVelocity = controller.velocity.z;
 } else {
 deltaPosition.x = xVelocity * Time.deltaTime;
 deltaPosition.z = zVelocity * Time.deltaTime;
 anim.SetBool ("Jump", false);
 }
 deltaPosition.y = verticalSpeed * Time.deltaTime;
 controller.Move (deltaPosition);
 verticalSpeed += Physics.gravity.y * Time.deltaTime;
 if ((controller.collisionFlags & CollisionFlags.Below)
!= 0) {
 verticalSpeed = 0;
 }
 }

17. Save your script and play the scene. You will be able to jump around using the Space
key. Observe how the character's velocity affects the direction of the jump.

Chapter 7

291

How it works...
Observe that once this function is added to the script, the Apply Root Motion field, in the
Animator component, changes from a checked box to Handled by Script. The reason is that
in order to override the animation clip's original movement, we have placed, inside Unity's
OnAnimatorMove() function, a series of commands to move our character controller while
jumping. The line of code: controller.Move (deltaPosition); basically replaces
the jump's direction from the original animation with the deltaPosition 3D Vector, which
is made of the character's velocity at the instant before the jump (x and z-axis) and the
calculation between the jumpHeight variable and gravity force overtime (y-axis).

Adding rigid props to animated characters
In case you haven't included a sufficient number of props to your character when modeling
and animating it, you might want to give her the chance of collecting new ones at runtime.
In this recipe, we will learn how to instantiate a GameObject and assign it to a character,
respecting the animation hierarchy.

Getting ready
For this recipe, we have prepared a Unity Package named Props, containing a basic scene
that features an animated character and a prefab named badge. The package can be found
inside the 1362_07_06 folder.

How to do it...
To add a rigid prop at runtime to an animated character, follow these steps:

1. Create a new project and import the Props Unity Package. Then, from the Project
view, open the mecanimPlayground level.

Controlling 3D Animations

292

2. From the Project view, add the badge prop to the scene by dragging it onto the
Hierarchy view. Then, make it a child of the mixamorig:Spine2 transform (use the
Hierarchy tree to navigate to MsLaser | mixamorig:Hips | mixamorig:Spine |
mixamorig:Spine1 | mixamorig:Spine2). Then, make the badge object visible above
the character's chest by changing its Transform Position to X: -0.08, Y: 0, Z: 0.15;
and Rotation to X: 0.29, Y: 0.14, Z:-13.29.

3. Make a note of the Position and Rotation values, and delete the badge object from
the scene.

4. Add a new Cube to the scene (drop-down Create | 3D Object | Cube), rename it as
PropTrigger, and change its Position to X: 0, Y: 0.5, Z: 2.

5. From the Inspector view's Box Collider component, check the Is Trigger option.

6. From the Project view, create a new C# Script named AddProp.cs.

7. Open the script and add the following code:
using UnityEngine;
using System.Collections;

public class AddProp : MonoBehaviour {
 public GameObject prop;
 public Transform targetBone;
 public Vector3 positionOffset;
 public Vector3 rotationOffset;
 public bool destroyTrigger = true;

 void OnTriggerEnter (Collider collision){

 if (targetBone.IsChildOf(collision.transform)){
 bool checkProp = false;
 foreach(Transform child in targetBone){
 if (child.name == prop.name)
 checkProp = true;
 }

 if(!checkProp){

Chapter 7

293

 GameObject newprop;
 newprop = Instantiate(prop, targetBone.position,
targetBone.rotation) as GameObject;
 newprop.name = prop.name;
 newprop.transform.parent = targetBone;
 newprop.transform.localPosition += positionOffset;
 newprop.transform.localEulerAngles +=
rotationOffset;
 if(destroyTrigger)
 Destroy(gameObject);
 }
 }
 }
}

8. Save and close the script.

9. Attach the AddProp.cs script to the PropTrigger GameObject.

10. Select the PropTrigger textbox and check out its Add Prop component. First,
populate the Prop field with the badge prefab. Then, populate Target Bone with the
mixamorig:Spine2 transform. Finally, assign the Position and Rotation values that
we have previously made a note of to the Position Offset and Rotation Offset fields,
respectively (Position Offset: X: -0.08, Y: 0, Z: 0.15; Rotation Offset: X: 0.29, Y:
0.14, Z:-13.29).

Controlling 3D Animations

294

11. Play the scene. Using the 'WASD' keyboard control scheme, direct the character to the
PropTrigger textbox. Colliding with it will add a badge to the character.

How it works...
Once it's been triggered by the character, the script attached to PropTrigger instantiates
the assigned prefab, making it a child of the bones that they have been "placed into". The
Position Offset and Rotation Offset can be used to fine-tune the exact position of the prop
(relative to its parent transform). As the props become parented by the bones of the animated
character, they will follow and respect its hierarchy and animation. Note that the script checks
for the preexisting props of the same name before actually instantiating a new one.

There's more...
You can make a similar script to remove the props. In this case, the OnTriggerEnter
function will contain only the following code:

if (targetBone.IsChildOf(collision.transform)){
 foreach(Transform child in targetBone){
 if (child.name == prop.name)
 Destroy (child.gameObject);
 }
}

Chapter 7

295

Using Animation Events to throw an object
Now that your animated character is ready, you might want to coordinate some of her actions
with her animation states. In this recipe, we will exemplify this by making the character throw
an object whenever the appropriate animation clip reaches the right time. To do so, we will
make use of Animation Events, which basically trigger a function from the animation clip's
timeline. This feature, recently introduced to the Mecanim system, should feel familiar to
those experienced with the Add Event feature of the classic Animation panel.

Getting ready
For this recipe, we have prepared a Unity Package named Throwing, containing a basic
scene that features an animated character and a prefab named EasterEgg. The package
can be found inside the 1362_07_07 folder.

How to do it...
To make an animated character throw an Easter egg (!), follow these steps:

1. Create a new project and import the Throwing Unity Package. Then, from the
Project view, open the mecanimPlayground level.

2. Play the level and press F on your keyboard. The character will move as if she is
throwing something with her right hand.

Controlling 3D Animations

296

3. From the Project view, create a new C# Script named ThrowObject.cs.

4. Open the script and add the following code:
using UnityEngine;
using System.Collections;

public class ThrowObject : MonoBehaviour {
 public GameObject prop;
 private GameObject proj;
 public Vector3 posOffset;
 public Vector3 force;
 public Transform hand;
 public float compensationYAngle = 0f;

 public void Prepare () {

 proj = Instantiate(prop, hand.position, hand.rotation) as
GameObject;
 if(proj.GetComponent<Rigidbody>())
 Destroy(proj.GetComponent<Rigidbody>());
 proj.GetComponent<SphereCollider>().enabled = false;
 proj.name = "projectile";
 proj.transform.parent = hand;
 proj.transform.localPosition = posOffset;
 proj.transform.localEulerAngles = Vector3.zero;
 }

 public void Throw () {

 Vector3 dir = transform.rotation.eulerAngles;
 dir.y += compensationYAngle;
 proj.transform.rotation = Quaternion.Euler(dir);
 proj.transform.parent = null;
 proj.GetComponent<SphereCollider>().enabled = true;
 Rigidbody rig = proj.AddComponent<Rigidbody>();
 Collider projCollider = proj.GetComponent<Collider> ();
 Collider col = GetComponent<Collider> ();
 Physics.IgnoreCollision(projCollider, col);
 rig.AddRelativeForce(force);
 }
}

5. Save and close the script.

Chapter 7

297

6. Attach the ThrowObject.cs script to the character's GameObject named MsLaser.

7. Select the MsLaser object. From the Inspector view, check out its Throw Object
component. Then, populate the Prop field with a prefab named EasterEgg. Populate
Hand with mixamorig:RightHand. Also, change Pos Offset to X: 0; Y: 0.07; Z: 0.04.
Finally, change Force to X: 0; Y: 200; Z: 500.

8. From the Project view, select the Swat@toss_grenade file. Then, from the Inspector
view, access the Animation section and scroll down to the Events section.

9. Expand the Events section. Drag the playhead to approximately 0:17 (017.9%) of
the animation timeline. Then, click on the button with the marker + icon to add an
Animation Event. From the Edit Animation Event window, set Function as Prepare.
Close the window.

10. Add a new animation event at approximately 1:24 (057.1%) of the animation timeline.
This time, from the Edit Animation Event window, set Function as Throw. Close
the window.

Controlling 3D Animations

298

11. Click on the Apply button to save the changes.

12. Play your scene. Your character will now be able to throw an Easter egg when you
press the F key.

How it works...
Once the toss_grenade animation reaches the moments that we have set our Events to,
the Prepare() and throw() functions are called. The former instantiates a prefab, now
named projectile, into the character's hand (Projectile Offset values are used to fine-tune its
position), also making it respect the character's hierarchy. Also, it disables the prefab's collider
and destroys its Rigidbody component, provided it has one. The latter function enables the
projectile's collider, and adds a Rigidbody component to it, making it independent from the
character's hand. Finally, it adds a relative force to the projectile's Rigidbody component, so
it will behave as if thrown by the character. The Compensation YAngle can be used to adjust
the direction of the grenade, if necessary.

Applying Ragdoll physics to a character
Action games often make use of Ragdoll physics to simulate the character's body reaction to
being unconsciously under the effect of a hit or explosion. In this recipe, we will learn how to
set up and activate Ragdoll physics to our character whenever she steps in a landmine object.
We will also use the opportunity to reset the character's position and animations a number of
seconds after that event has occurred.

Getting ready
For this recipe, we have prepared a Unity Package named Ragdoll, containing a basic scene
that features an animated character and two prefabs, already placed into the scene, named
Landmine and Spawnpoint. The package can be found inside the 1362_07_08 folder.

How to do it...
To apply Ragdoll physics to your character, follow these steps:

1. Create a new project and import the Ragdoll Unity Package. Then, from the Project
view, open the mecanimPlayground level.

2. You will see the animated MsLaser character and two discs: Landmine and
Spawnpoint.

3. First, let's set up our Ragdoll. Access the GameObject | 3D Object | Ragdoll...
menu and the Ragdoll wizard will pop-up.

Chapter 7

299

4. Assign the transforms as follows:

 � Pelvis: mixamorig:Hips

 � Left Hips: mixamorig:LeftUpLeg

 � Left Knee: mixamorig:LeftLeg

 � Left Foot: mixamorig:LeftFoot

 � Right Hips: mixamorig:RightUpLeg

 � Right Knee: mixamorig:RightLeg

 � Right Foot: mixamorig:RightFoot

 � Left Arm: mixamorig:LeftArm

 � Left Elbow: mixamorig:LeftForeArm

 � Right Arm: mixamorig:RightArm

 � Right Elbow: mixamorig:RightForeArm

 � Middle Spine: mixamorig:Spine1

 � Head: mixamorig:Head

 � Total Mass: 20

 � Strength: 50

Controlling 3D Animations

300

5. From the Project view, create a new C# Script named RagdollCharacter.cs.

6. Open the script and add the following code:
using UnityEngine;
using System.Collections;

public class RagdollCharacter : MonoBehaviour {

 void Start () {
 DeactivateRagdoll();
 }

 public void ActivateRagdoll(){
 gameObject.GetComponent<CharacterController> ().enabled
= false;
 gameObject.GetComponent<BasicController> ().enabled =
false;
 gameObject.GetComponent<Animator> ().enabled = false;
 foreach (Rigidbody bone in
GetComponentsInChildren<Rigidbody>()) {
 bone.isKinematic = false;
 bone.detectCollisions = true;
 }
 foreach (Collider col in
GetComponentsInChildren<Collider>()) {
 col.enabled = true;
 }
 StartCoroutine (Restore ());

 }
 public void DeactivateRagdoll(){

 gameObject.GetComponent<BasicController>().enabled =
true;
 gameObject.GetComponent<Animator>().enabled = true;
 transform.position = GameObject.Find("Spawnpoint").transform.
position;
 transform.rotation = GameObject.Find("Spawnpoint").transform.
rotation;
 foreach(Rigidbody bone in
GetComponentsInChildren<Rigidbody>()){
 bone.isKinematic = true;
 bone.detectCollisions = false;
 }

Chapter 7

301

 foreach (CharacterJoint joint in
GetComponentsInChildren<CharacterJoint>()) {
 joint.enableProjection = true;
 }
 foreach(Collider col in
GetComponentsInChildren<Collider>()){
 col.enabled = false;
 }
 gameObject.GetComponent<CharacterController>().enabled
 = true;

 }

 IEnumerator Restore(){
 yield return new WaitForSeconds(5);
 DeactivateRagdoll();
 }
}

7. Save and close the script.

8. Attach the RagdollCharacter.cs script to the MsLaser GameObject. Then, select the
MsLaser character and, from the top of the Inspector view, change its tag to Player.

9. From the Project view, create a new C# Script named Landmine.cs.

10. Open the script and add the following code:
using UnityEngine;
using System.Collections;

public class Landmine : MonoBehaviour {
 public float range = 2f;
 public float force = 2f;
 public float up = 4f;
 private bool active = true;

 void OnTriggerEnter (Collider collision){
 if(collision.gameObject.tag == "Player" && active){
 active = false;
 StartCoroutine(Reactivate());
 collision.gameObject.GetComponent<RagdollCharacter>().
ActivateRagdoll();
 Vector3 explosionPos = transform.position;
 Collider[] colliders =
Physics.OverlapSphere(explosionPos, range);
 foreach (Collider hit in colliders) {

Controlling 3D Animations

302

 if (hit.GetComponent<Rigidbody>())
 hit.GetComponent<Rigidbody>().
AddExplosionForce(force, explosionPos, range, up);
 }
 }
 }
 IEnumerator Reactivate(){
 yield return new WaitForSeconds(2);
 active = true;
 }
}

11. Save and close the script.

12. Attach the script to the Landmine GameObject.

13. Play the scene. Using the WASD keyboard control scheme, direct the character to the
Landmine GameObject. Colliding with it will activate the character's Ragdoll physics
and apply an explosion force to it. As a result, the character will be thrown away to
a considerable distance and will no longer be in the control of its body movements,
akin to a ragdoll.

How it works...
Unity's Ragdoll Wizard assigns, to selected transforms, the components Collider,
Rigidbody, and Character Joint. In conjunction, those components make Ragdoll
physics possible. However, those components must be disabled whenever we want our
character to be animated and controlled by the player. In our case, we switch those
components on and off using the RagdollCharacter script and its two functions:
ActivateRagdoll() and DeactivateRagdoll(), the latter includes instructions
to re-spawn our character in the appropriate place.

For the testing purposes, we have also created the Landmine script, which calls
RagdollCharacter script's function named ActivateRagdoll(). It also applies
an explosion force to our ragdoll character, throwing it outside the explosion site.

There's more...
Instead of resetting the character's transform settings, you could have destroyed its
GameObject and instantiated a new one over the respawn point using Tags. For more
information on this subject, check Unity's documentation at http://docs.unity3d.com/
ScriptReference/GameObject.FindGameObjectsWithTag.html.

http://docs.unity3d.com/ScriptReference/GameObject.FindGameObjectsWithTag.html
http://docs.unity3d.com/ScriptReference/GameObject.FindGameObjectsWithTag.html

Chapter 7

303

Rotating the character's torso to aim a
weapon

When playing a third-person character, you might want her to aim her weapon at some target
that is not directly in front of her, without making her change her direction. In these cases,
you will need to apply what is called a procedural animation, which does not rely on premade
animation clips, but rather on the processing of other data, such as player input, to animate
the character. In this recipe, we will use this technique to rotate the character's spine by
moving the mouse, allowing for adjustments in the character's aim. We will also use this
opportunity to cast a ray from the character's weapon and display a crosshair over the nearest
object on target. Please note that this approach will work with the cameras standing behind
the third-person controlled characters.

Getting ready
For this recipe, we have prepared a Unity Package named AimPointer, containing a basic
scene that features a character armed with a laser pointer. The package, which also includes
the crossAim sprite that is to be used as a crosshair for aiming, can be found inside the
1362_07_09 folder.

How to do it...
1. Create a new project and import the AimPointer Unity Package. Then, from the

Project view, open the mecanimPlayground level. You will see an animated character
named MsLaser holding the pointerPrefab object.

2. From the Project view, create a new C# Script named MouseAim.cs.

3. Open the script and add the following code:
using UnityEngine;
using System.Collections;

public class MouseAim : MonoBehaviour {

 public Transform spine;
 private float xAxis = 0f;
 private float yAxis = 0f;
 public Vector2 xLimit = new Vector2(-30f,30f);
 public Vector2 yLimit= new Vector2(-30f,30f);

Controlling 3D Animations

304

 public Transform weapon;
 public GameObject crosshair;
 private Vector2 aimLoc;

 public void LateUpdate(){

 yAxis += Input.GetAxis ("Mouse X");
 yAxis = Mathf.Clamp (yAxis, yLimit.x, yLimit.y);
 xAxis -= Input.GetAxis ("Mouse Y");
 xAxis = Mathf.Clamp (xAxis, xLimit.x, xLimit.y);
 Vector3 corr = new Vector3(xAxis,yAxis, spine.
localEulerAngles.z);
 spine.localEulerAngles = corr;
 RaycastHit hit;
 Vector3 fwd = weapon.TransformDirection(Vector3.forward);
 if (Physics.Raycast (weapon.position, fwd, out hit)) {
 print (hit.transform.gameObject.name);
 aimLoc = Camera.main.WorldToScreenPoint(hit.point);
 crosshair.SetActive(true);
 crosshair.transform.position = aimLoc;
 } else {
 crosshair.SetActive(false);
 }
 Debug.DrawRay (weapon.position, fwd, Color.red);
 }
}

4. Save and close the script.

Chapter 7

305

5. From the Hierarchy view, create a new UI | Image GameObject. Then, from the
Inspector view, change its name to crosshair. Also, in Rect Transform, set its
Width and Height to 16 and populate Source Image field with the crossAim sprite.

Controlling 3D Animations

306

6. Attach the MouseAim.cs script to the MsLaser GameObject.

7. Select the MsLaser GameObject and from the Inspector view's Mouse Aim
component, populate the Spine field with mixamorig:Spine; the Weapon field
with pointerPrefab; and the Crosshair field with the crosshair UI GameObject.

8. Play the scene. You will now be able to rotate the character's torso by moving the
mouse. Even better, the crosshair GUI texture will be displayed at the top of the
object that is being aimed at by the pointer.

Chapter 7

307

How it works...
You might have noticed that all the code for rotating the character's spine is inside the
LateUpdate function, as opposed to the more common Update function. The reason for
this is to make sure that all the transform manipulation will be executed after the original
animation clip is played, overriding it.

Regarding the spine rotation, our script adds the horizontal and vertical speed of the mouse
to the xAxis and yAxis float variables. These variables are then constrained within the
specified limits, avoiding distortions to the character's model. Finally, the spine object
transform rotation for x and y axes are set to xAxis and yAxis respectively. The z-axis is
preserved from the original animation clip.

Additionally, our script uses a Raycast command to detect if there is any object's collider
within the weapon's aim, in which case a crosshair will be drawn on the screen.

There's more...
Since this recipe's script was tailored for cameras standing behind the third-person controlled
characters, we have included a more generic solution to the problem—in fact, a similar approach
to the one presented in Unity 4.x Cookbook, Packt Publishing. An alternate script named
MouseAimLokkAt, which can be found inside the 1362_07_09 folder, starts by converting
our bi-dimensional mouse cursor screen's coordinates to the three-dimensional world space
coordinates (stored in a point variable). Then, it rotates the character's torso towards the point
location, using the LookAt() command to do so. Additionally, it makes sure that the spine
does not extrapolate minY and maxY angles, otherwise causing distortions to the character
model. Also, we have included a Compensation YAngle variable that makes it possible for us
to fine-tune the character's alignment with the mouse cursor. Another addition is the option to
freeze the X-axis rotation, in case you just want the character to rotate the torso laterally, but not
look up or down. Again, this script uses a Raycast command to detect objects in front of the
weapon's aim, drawing a crosshair on the screen when they are present.

Chapter 8

309

8
Positions, Movement

and Navigation for
Character GameObjects

In this chapter, we will cover:

 f Player control of a 2D GameObject (and limiting the movement within a rectangle)

 f Player control of a 3D GameObject (and limiting the movement within a rectangle)

 f Choosing destinations – find the nearest (or a random) spawn point

 f Choosing destinations – respawn to the most recently passed checkpoint

 f NPC NavMeshAgent to seek or flee destination while avoiding obstacles

 f NPC NavMeshAgent to follow waypoints in sequence

 f Controlling the object group movement through flocking

Introduction
Many GameObjects in games move! Movement can be controlled by the player, by the
(simulated) laws of physics in the environment, or by the Non-Player Character (NPC) logic; for
example, objects that follow a path of waypoints, or seek (move towards) or flee (away) from
the current position of a character. Unity provides several controllers, for first and third-person
characters, and for vehicles such as cars and airplanes. GameObject movement can also be
controlled through the state machines of the Unity Mecanim animation system.

Positions, Movement and Navigation for Character GameObjects

310

However, there maybe times when you wish to tweak the Player character controllers from
Unity, or write your own. You might wish to write directional logic—simple or sophisticated
Artificial Intelligence (AI) to control the game's NPC and enemy characters. Such AI might
involve your computer program making objects orient and move towards or away from
characters or other game objects.

This chapter presents a range of such directional recipes, from which many games can benefit
in terms of a richer and more exciting user experience.

Unity provides sophisticated classes and components including the Vector3 class and rigid
body physics for modeling realistic movements, forces, and collisions in games. We make use
of these game engine features to implement some sophisticated NPC and enemy character
movements in the recipes of this chapter.

The big picture
For 3D games (and to some extent, 2D games as well), a fundamental class of object is the
Vector3 class—objects that store and manipulate (x,y,z) values representing locations in 3D
space. If we draw an imaginary arrow from the origin (0,0,0) to a point on space, then the
direction and length of this arrow (vector) can represent a velocity or force (that is, a certain
amount of magnitude in a certain direction).

If we ignore all the character controller components, colliders, and the physics system in
Unity, we can write code that teleports objects directly to a particular (x, y, z) location in our
scene. And sometimes this is just what we want to do; for example, we may wish to spawn an
object at a location. However, in most cases, if we want objects to move in more physically
realistic ways, then we either apply a force to the object, or change its velocity component. Or
if it has a Character Controller component, then we can send it a Move() message. With the
introduction of Unity NavMeshAgents (and associated Navigation Meshes), we can now set a
destination for an object with a NavMeshAgent, and then the built-in pathfinding logic will do
the work of moving our NPC object on a path towards the given (x, y, z) destination location.

As well as deciding which technique will be used to move an object, our game must also do
the work of deciding how to choose the destination locations, or the direction and magnitude
of changes to movement. This can involve logic to tell an NPC or enemy object the destination
of the Player's character (to be moved towards, and then perhaps attacked when close
enough). Or perhaps shy NPC objects will be given the direction to the Player's character,
so that they can flee in the opposite direction, until they are a safe distance away.

Other core concepts in the NPC object movement and creation (instantiation) include:

 f Spawn points

 � Specific locations in the scene where objects are to be created, or moved to

Chapter 8

311

 f Waypoints

 � The sequence of locations to define a path for NPCs or perhaps, the Player's
character to follow

 f Checkpoints

 � Locations (or colliders) that, once passed through, change what happens in
the game (for example, extra time, or if a Player's character gets killed, they
respawn to the last crossed checkpoint, and so on)

Player control of a 2D GameObject (and
limiting the movement within a rectangle)

While the rest of the recipes in this chapter are demonstrated in 3D projects, basic character
movement in 2D, and also limiting the movement to a bounding rectangle, are core skills for
many 2D games, and so this first recipe illustrates how to achieve these features for a 2D game.

Since in Chapter 3, Inventory GUI, we already have a basic 2D game, we'll adapt this game to
restrict the movement to a bounding rectangle.

Getting ready
This recipe builds on a simple 2D game called Creating the Simple2DGame_SpaceGirl
mini-game from Chapter 3, Inventory GUI. Start with a copy of this game, or use the provided
completed recipe project as the basis for this recipe.

Positions, Movement and Navigation for Character GameObjects

312

How to do it...
To create a 2D sprite controlled by the user with the movement that is limited within a
rectangle, follow these steps:

1. Create a new empty GameObject named corner_max, and position it somewhere
above and to the right of the GameObject called Player-girl1. With this GameObject
selected in the Hierarchy view, choose the large yellow oblong icon, highlighted in
the Inspector panel.

2. Duplicate the corner_max GameObject by naming the clone as corner_min, and
position this clone somewhere below and to the left of the player-spaceGirl1
GameObject. The coordinates of these two GameObjects will determine the
maximum and minimum bounds of movement, permitted for the player's character.

3. Modify the C# Script called PlayerMove to declare some new variables at the
beginning of the class:
public Transform corner_max;
public Transform corner_min;
private float x_min;
private float y_min;
private float x_max;
private float y_max;

4. Modify the C# Script called PlayerMove so that the Awake() method now gets
a reference to the SpriteRenderer, and uses this object to help setup the maximum
and minimum X and Y movement limits:
void Awake(){
 rigidBody2D = GetComponent<Rigidbody2D>();
 x_max = corner_max.position.x;
 x_min = corner_min.position.x;
 y_max = corner_max.position.y;

Chapter 8

313

 y_min = corner_min.position.y;
}

5. Modify the C# Script called PlayerMove to declare a new method called
KeepWithinMinMaxRectangle():
 private void KeepWithinMinMaxRectangle(){
 float x = transform.position.x;
 float y = transform.position.y;
 float z = transform.position.z;
 float clampedX = Mathf.Clamp(x, x_min, x_max);
 float clampedY = Mathf.Clamp(y, y_min, y_max);
 transform.position = new Vector3(clampedX, clampedY, z);
 }

6. Modify the C# Script called PlayerMove so that, after having done everything
else in the FixedUpdate()method, a call will finally be made to the
KeepWithinMinMaxRectangle() method:
 void FixedUpdate(){
 float xMove = Input.GetAxis("Horizontal");
 float yMove = Input.GetAxis("Vertical");

 float xSpeed = xMove * speed;
 float ySpeed = yMove * speed;

 Vector2 newVelocity = new Vector2(xSpeed, ySpeed);

 rigidBody2D.velocity = newVelocity;

 // restrict player movement
 KeepWithinMinMaxRectangle();
 }

7. With the player-SpaceGirl1 GameObject in the Hierarchy view, drag the corner_max
and corner_min GameObjects over the public variables called corner_max and
corner_min in the Inspector.

8. Before running the scene in the Scene panel, try repositioning the corner_max
and corner_min GameObjects. When you run the scene, the positions of these two
GameObjects (max and min, and X and Y) will be used as the limits of movement for
the Player's player-SpaceGirl1 character.

9. While all this works fine, let's make the rectangular bounds of the movement visually
explicit in the Scene panel by having a yellow "gizmo" rectangle drawn. Add the
following method to the C# script class called PlayerMove:
void OnDrawGizmos(){
 Vector3 top_right = Vector3.zero;

Positions, Movement and Navigation for Character GameObjects

314

 Vector3 bottom_right = Vector3.zero;
 Vector3 bottom_left = Vector3.zero;
 Vector3 top_left = Vector3.zero;

 if(corner_max && corner_min){
 top_right = corner_max.position;
 bottom_left = corner_min.position;

 bottom_right = top_right;
 bottom_right.y = bottom_left.y;

 top_left = top_right;
 top_left.x = bottom_left.x;
 }

 //Set the following gizmo colors to YELLOW
 Gizmos.color = Color.yellow;

 //Draw 4 lines making a rectangle
 Gizmos.DrawLine(top_right, bottom_right);
 Gizmos.DrawLine(bottom_right, bottom_left);
 Gizmos.DrawLine(bottom_left, top_left);
 Gizmos.DrawLine(top_left, top_right);
}

How it works...
You added the empty GameObjects called corner_max and corner_min to the scene. The X-
and Y- coordinates of these GameObjects will be used to determine the bounds of movement
that we will permit for the character called player-SpaceGirl1. Since these are the empty
GameObjects, they will not be seen by the player when in the play-mode. However, we can see
and move them in the Scene panel, and having added the yellow oblong icons, we can see
their positions and names very easily.

Upon Awake() the PlayerMoveWithLimits object, inside the player-SpaceGirl1
GameObject, records the maximum and minimum X- and Y- values of the GameObjects called
corner_max and corner_min. Each time the physics system is called via the FixedUpdate()
method, the velocity of the player-SpaceGirl1 character is set according to the horizontal and
vertical keyboard/joystick inputs. However, the final action of the FixedUpdate() method
is to call the KeepWithinMinMaxRectangle() method, which uses the Math.Clamp(…)
function to move the character back inside the X- and Y- limits. This happens so that the
player's character is not permitted to move outside the area defined by the corner_max and
corner_min GameObjects.

Chapter 8

315

The OnDrawGizmos() method tests that the references to the corner_max and corner_
min GameObjects are not null, and then sets the positions of the four Vector3 objects,
representing the four corners defined by the rectangle with corner_max and corner_min at
the opposite corners. It then sets the Gizmo color to yellow, and draws lines, connecting the
four corners in the Scene panel.

See also
Refer to the next recipe for more information about limiting player controlled character
movements.

Player control of a 3D GameObject (and
limiting the movement within a rectangle)

Many of the 3D recipes in this chapter are built on this basic project, which constructs a scene
with a textured terrain, a Main Camera, and a red cube that can be moved around by the user
with the four directional arrow keys. The bounds of movement of the cube are constrained
using the same technique as in the previous 2D recipe.

Positions, Movement and Navigation for Character GameObjects

316

How to do it...
To create a basic 3D cube controlled game, follow these steps:

1. Create a new, empty 3D project.

2. Once the project has been created, import the single Terrain Texture named
SandAlbedo (it was named GoodDirt in Unity 4). Choose menu: Assets |
Import Package | Environments, deselect everything, and then locate and tick
the asset: Assets/Environment/TerrainAssets/SurfaceTextures/
SandAlbedo.psd.

You could have just added the Environment Asset Package
when creating the project—but this would have imported
100s of files, and we only needed this one. Starting a
project in Unity, then selectively importing just what we
need is the best approach to take, if you want to keep the
project's Asset folders to small sizes.

3. Create a terrain positioned at (-15, 0, -10) and sized 30 by 20.

The transform position for the terrains relates to their corner
and not their center.
Since the Transform position of the terrains relates to the
corner of the object, we center such objects at (0,0,0) by
setting the X-coordinate equal to (-1*width/2), and the
Z-coordinate equal to (-1*length/2). In other words, we slide
the object by half its width and half its height to ensure that
its center is just where we want it.
In this case, the width is 30 and the length is 20, hence we
get -15 for X (-1 * 30/2), and -10 for Z (-1 * 20/2).

4. Texture paint this terrain with your texture called SandAlbedo.

5. Create a directional light (it should face downwards to the terrain with the default
settings—but if it doesn't for some reason, then rotate it so that the terrain is well lit).

6. Make the following changes to the Main Camera:

 � position = (0, 20, -15)

 � rotation = (60, 0, 0)

7. Change the Aspect Ratio of the Game Panel from Free Aspect to 4:3. You will now
see the whole of the Terrain in the Game Panel.

Chapter 8

317

8. Create a new empty GameObject named corner_max, and position it at (14, 0, 9).
With this GameObject selected in the Hierarchy, choose the large, yellow oblong icon,
highlighted in the Inspector panel.

9. Duplicate the corner_max GameObject, naming the clone as corner_min, and
position this clone at (-14, 0, -9). The coordinates of these two GameObjects will
determine the maximum and minimum bounds of the movement permitted for the
player's character.

10. Create a new Cube GameObject named Cube-player at a position called (0, 0.5, 0),
and size it as (1,1,1).

11. Add to the Cube-player GameObject, apply a component called Physics | RigidBody,
and uncheck the RigidBody property Use Gravity.

12. Create a red Material named m_red, and apply this Material to Cube-player.

13. Add the following C# script class called PlayerControl to the Cube-player:
using UnityEngine;
using System.Collections;

public class PlayerControl : MonoBehaviour {
 public Transform corner_max;
 public Transform corner_min;

 public float speed = 40;
 private Rigidbody rigidBody;

 private float x_min;
 private float x_max;
 private float z_min;
 private float z_max;

 void Awake (){
 rigidBody = GetComponent<Rigidbody>();
 x_max = corner_max.position.x;
 x_min = corner_min.position.x;
 z_max = corner_max.position.z;
 z_min = corner_min.position.z;
 }

 void FixedUpdate() {
 KeyboardMovement();
 KeepWithinMinMaxRectangle();
 }

 private void KeyboardMovement (){

Positions, Movement and Navigation for Character GameObjects

318

 float xMove = Input.GetAxis("Horizontal") * speed * Time.
deltaTime;
 float zMove = Input.GetAxis("Vertical") * speed * Time.
deltaTime;

 float xSpeed = xMove * speed;
 float zSpeed = zMove * speed;

 Vector3 newVelocity = new Vector3(xSpeed, 0, zSpeed);

 rigidBody.velocity = newVelocity;

 // restrict player movement
 KeepWithinMinMaxRectangle ();
 }

 private void KeepWithinMinMaxRectangle (){
 float x = transform.position.x;
 float y = transform.position.y;
 float z = transform.position.z;
 float clampedX = Mathf.Clamp(x, x_min, x_max);
 float clampedZ = Mathf.Clamp(z, z_min, z_max);
 transform.position = new Vector3(clampedX, y, clampedZ);
 }

 void OnDrawGizmos (){
 Vector3 top_right = Vector3.zero;
 Vector3 bottom_right = Vector3.zero;
 Vector3 bottom_left = Vector3.zero;
 Vector3 top_left = Vector3.zero;

 if(corner_max && corner_min){
 top_right = corner_max.position;
 bottom_left = corner_min.position;

 bottom_right = top_right;
 bottom_right.z = bottom_left.z;

 top_left = bottom_left;
 top_left.z = top_right.z;
 }

 //Set the following gizmo colors to YELLOW

Chapter 8

319

 Gizmos.color = Color.yellow;

 //Draw 4 lines making a rectangle
 Gizmos.DrawLine(top_right, bottom_right);
 Gizmos.DrawLine(bottom_right, bottom_left);
 Gizmos.DrawLine(bottom_left, top_left);
 Gizmos.DrawLine(top_left, top_right);
 }
}

14. With the Cube-player GameObject selected in the Hierarchy, drag the GameObjects
called corner_max and corner_min over the public variables called corner_max
and corner_min in the Inspector panel.

15. When you run the scene, the positions of the corner_max and corner_min
GameObjects will define the bounds of movement for the Player's Cube-player
character.

How it works...
The scene contains a positioned terrain so that its center is (0,0,0). The red cube is
controlled by the user's arrow keys through the PlayerControl script.

Just as with the previous 2D recipe, a reference to the (3D) RigidBody component is stored
when the Awake() method executes, and the maximum and minimum X- and Z- values are
retrieved from the two corner GameObjects, and is stored in the x_min, x_max, z_min, and
z_max variables. Note that for this basic 3D game, we won't allow any Y-movement, although
such movement (and bounding limits by adding a third 'max-height' corner GameObject) can
be easily added by extending the code in this recipe.

The KeyboardMovement() method reads the horizontal and vertical input values (which the
Unity default settings read from the four directional arrow keys). Based on these left-right and
up-down values, the velocity of the cube is updated. The amount it will move depends on the
speed variable.

The KeepWithinMinMaxRectangle() method uses the Math.Clamp(…) function to move
the character back inside the X and Z limits, so that the player's character is not permitted to
move outside the area defined by the corner_max and corner_min GameObjects.

The OnDrawGizmos() method tests that the references to the corner_max and corner_min
GameObjects are not null, and then sets the positions of the four Vector3 objects,
representing the four corners defined by the rectangle with the corner_max and corner_min
GameObjects at the opposite corners. It then sets the Gizmo color to yellow, and draws lines
connecting the four corners in the Scene panel.

Positions, Movement and Navigation for Character GameObjects

320

Choosing destinations – find the nearest
(or a random) spawn point

Many games make use of spawn points and waypoints. This recipe demonstrates two very
common examples of spawning—the choosing of either a random spawn point, or the nearest
one to an object of interest (such as the Player's character), and then the instantiation of an
object at that chosen point.

Getting ready
This recipe builds upon the previous recipe. So, make a copy of this project, open it, and then
follow the next steps.

How to do it...
To find a random spawn point, follow these steps:

1. Create a Sphere sized as (1,1,1) at (2,2,2) position, and apply the m_red Material.

2. Create a new Prefab named Prefab-ball, and drag your Sphere into it (and then
delete the Sphere from the Hierarchy panel).

3. Create a new capsule object named Capsule-spawnPoint at (3, 0.5, 3), give it the
tag as Respawn (this is one of the default tags that Unity provides).

For testing, we'll leave these Respawn points visible. For
the final game, we'll then uncheck the Mesh Rendered
of each Respawn GameObject, so that they are not
visible to the Player.

4. Make several copies of your Capsule-spawnPoint by moving them to different
locations on the terrain.

5. Add an instance of the following C# script class called SpawnBall to the Cube-the
player GameObject:
using UnityEngine;
using System.Collections;

public class SpawnBall : MonoBehaviour {
 public GameObject prefabBall;
 private SpawnPointManager spawnPointManager;
 private float destroyAfterDelay = 1;

Chapter 8

321

 private float testFireKeyDelay = 0;

 void Start (){
 spawnPointManager = GetComponent<SpawnPointManager> ();
 StartCoroutine("CheckFireKeyAfterShortDelay");
 }

 IEnumerator CheckFireKeyAfterShortDelay () {
 while(true){
 yield return new WaitForSeconds(testFireKeyDelay);
 // having waited, now we check every frame
 testFireKeyDelay = 0;
 CheckFireKey();
 }
 }

 private void CheckFireKey() {
 if(Input.GetButton("Fire1")){
 CreateSphere();
 // wait half-second before alling next spawn
 testFireKeyDelay = 0.5f;
 }
 }

 private void CreateSphere(){
 GameObject spawnPoint = spawnPointManager.RandomSpawnPoint ();
 GameObject newBall = (GameObject)Instantiate (prefabBall,
spawnPoint.transform.position, Quaternion.identity);
 Destroy(newBall, destroyAfterDelay);
 }
}

6. Add an instance of the following C# script class called SpawnPointManager to the
Cube-player GameObject:
using UnityEngine;
using System.Collections;

public class SpawnPointManager : MonoBehaviour {
 private GameObject[] spawnPoints;

 void Start() {
 spawnPoints = GameObject.FindGameObjectsWithTag("Respawn");

Positions, Movement and Navigation for Character GameObjects

322

 }

 public GameObject RandomSpawnPoint (){
 int r = Random.Range(0, spawnPoints.Length);
 return spawnPoints[r];
 }
}

7. Ensure that Cube-player is selected in the Inspector for the SpawnBall scripted
component. Then, drag Prefab-ball over the public variable projectile called
Prefab Ball.

8. Now, run your game. When you click on the mouse (fire) button, a sphere will be
instantiated randomly to one of the capsule locations.

How it works...
The Capsule-spawnPoint objects represent candidate locations, where we might wish to
create an instance of our ball Prefab. When our SpawnPointManager object, inside the
Cube-player GameObject, receives the Start() message, the respawns GameObject array
is set to the array, which is returned from the call to FindGameObjectsWithTag("Respa
wn"). This creates an array of all the objects in the scene with the tag called Respawn — that
is, all our Capsule-spawnPoint objects.

Chapter 8

323

When our SpawnBall object GameObject Cube-player receives the Start()
message, it sets the spawnPointManager variable to be a reference to its sibling
SpawnPointManager script component. Next, we start the coroutine method called
CheckFireKeyAfterShortDelay().

The CheckFireKeyAfterShortDelay() method uses a typical Unity coroutine
technique that goes into an infinite loop using a delay controlled by the value of
the testFireKeyDelay variable. The delay is to make Unity wait before calling
CheckFireKey() to test if the user wants a new sphere to be spawned.

Coroutines are an advanced technique, where execution inside the method
can be paused, and resumed from the same point. The Yield command
temporarily halts the execution of code in the method, allowing Unity to go
off and execute code in the other GameObjects and undertake physics and
rendering work and more. They are perfect for situations where, at regular
intervals, we wish to check whether something has happened (such as
testing for the Fire key, or whether a response message has been received
from an Internet request and so on).
Learn more about the Unity coroutines at http://docs.unity3d.com/
Manual/Coroutines.html.

The SpawnBall method CheckFireKey() tests whether, at that instant, the user is
pressing the Fire button. If the Fire button is pressed, then the CreateSphere()method is
called. Also, the testFireKeyDelay variable is set to 0.5. This ensures that we won't test
the Fire button again for half a second.

The SpawnBall method CreateSphere()assigns variable spawnPoint to the
GameObject returned by a call to the RandomSpawnpoint(…) method of our
spawnPointManager. Then it creates a new instance of prefab_Ball (via the public
variable) at the same position as the spawnPoint GameObject.

There's more...
There are some details that you don't want to miss.

Choosing the nearest spawn point
Rather than just choosing a random spawn point, let's search through array spawnpoints, and
choose the closest one to our player.

To find the nearest spawn point, we need to do the following:

1. Add the following method to the C# script class called SpawnPointManager:
public GameObject NearestSpawnpoint (Vector3 source){
 GameObject nearestSpawnPoint = spawnPoints[0];

http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html

Positions, Movement and Navigation for Character GameObjects

324

 Vector3 spawnPointPos = spawnPoints[0].transform.position;
 float shortestDistance = Vector3.Distance(source,
spawnPointPos);

 for (int i = 1; i < spawnPoints.Length; i++){
 spawnPointPos = spawnPoints[i].transform.position;
 float newDist = Vector3.Distance(source, spawnPointPos);
 if (newDist < shortestDistance){
 shortestDistance = newDist;
 nearestSpawnPoint = spawnPoints[i];
 }
 }

 return nearestSpawnPoint;
}

2. We now need to change the first line in the C# class called SpawnBall so
that the spawnPoint variable is set by a call to our new method called
NearestSpawnpoint(…):

private void CreateSphere(){
 GameObject spawnPoint = spawnPointManager.
NearestSpawnpoint(transform.position);

 GameObject newBall = (GameObject)Instantiate (prefabBall,
spawnPoint.transform.position, Quaternion.identity);
 Destroy(newBall, lifeDuration);
}

In the NearestSpawnpoint(…) method, we set nearestSpawnpoint to the first (array
index 0) GameObject in the array as our default. We then loop through the rest of the array
(array index 1 up to spawnPoints.Length). For each GameObject in the array, we test to
see if its distance is less than the shortest distance so far, and if it is, then we update the
shortest distance, and also set nearestSpawnpoint to the current element. When the
array has been searched, we return the GameObject that the nearestSpawnpoint variable
refers to.

Avoiding errors due to an empty array
Let's make our code a little more robust, so that it can cope with the issue of an empty
spawnPoints array—that is, when there are no objects tagged Respawn in the scene.

Chapter 8

325

To cope with the no objects tagged Respawn we need to do the following:

1. Improve our Start() method in the C# script class called SpawnPointManager, so
that an ERROR is logged if the array of objects tagged Respawn is empty:
public GameObject NearestSpawnpoint (Vector3 source){
void Start() {
 spawnPoints = GameObject.FindGameObjectsWithTag("Respawn");

 // logError if array empty
 if(spawnPoints.Length < 1) Debug.LogError ("SpawnPointManagaer -
cannot find any objects tagged 'Respawn'!");
}

2. Improve the RandomSpawnPoint() and NearestSpawnpoint()methods in the
C# script class called SpawnPointManager, so that they still return a GameObject
even if the array is empty:
public GameObject RandomSpawnPoint (){
 // return current GameObject if array empty
 if(spawnPoints.Length < 1) return null;

// the rest as before ...

3. Improve the CreateSphere()method in the C# class called SpawnBall, so that
we only attempt to instantiate a new GameObject if the RandomSpawnPoint() and
NearestSpawnpoint()methods have returned a non-null object reference:

private void CreateSphere(){
 GameObject spawnPoint = spawnPointManager.RandomSpawnPoint ();

 if(spawnPoint){
 GameObject newBall = (GameObject)Instantiate (prefabBall,
spawnPoint.transform.position, Quaternion.identity);
 Destroy(newBall, destroyAfterDelay);
 }
}

See also
 f The same techniques and code can be used for selecting spawn points or waypoints.

Refer to the NPC NavMeshAgent control to follow waypoints in sequence recipe in
this chapter for more information about waypoints.

Positions, Movement and Navigation for Character GameObjects

326

Choosing destinations – respawn to the
most recently passed checkpoint

A checkpoint usually represents a certain distance through the game (or perhaps a track)
in which an agent (user or NPC) has succeeded reaching. Reaching (or passing) checkpoints
often results in bonus awards, such as extra time, points, ammo, and so on. Also, if a player
has multiple lives, then often a player will be respawned only back as far as the most recently
passed checkpoint, rather than right to the beginning of the level.

This recipe demonstrates a simple approach to the checkpoints, whereby once the player's
character has passed a checkpoint, if they die they are moved back only to the most recently
passed checkpoint.

Getting ready
This recipe builds upon the player-controlled 3D cube Unity project that you created at the
beginning of this chapter. So, make a copy of this project, open it, and then follow the steps
for this recipe.

How to do it...
To have the respawn position upon losing a life change depending on the checkpoints passed,
follow these steps:

1. Move the Cube-player GameObject to the (12, 0.5, 0) position.

2. Select Cube-player in the Inspector panel and add a Character Controller
component by clicking on Add Component | Physics | Character Controller
(this is to enable the OnTriggerEnter collision messages to be received).

3. Create a cube named Cube-checkpoint-1 at (5, 0, 0), scaled to (1, 1, 20).

4. With Cube-checkpoint-1 selected, check the Is Trigger property of its Box Collider
component in the Inspector panel.

Chapter 8

327

5. Create a CheckPoint tag, and assign this tag to Cube-checkpoint-1.

6. Duplicate Cube-checkpoint-1 by naming the Cube-checkpoint-2 clone and
positioning it at (-5, 0, 0).

7. Create a sphere named Sphere-Death at (7, 0.5, 0). Assign the m_red material to
this sphere to make it red.

8. With Sphere-Death selected, check the Is Trigger property of its Sphere Collider
component in the Inspector panel.

9. Create a Death tag, and assign this tag to Sphere-Death.

10. Duplicate Sphere-Death, and position this clone at (0, 0.5, 0).

11. Duplicate Sphere-Death a second time, and position this second clone at (-10, 0.5, 0).

12. Add an instance of the following C# script class called CheckPoints to the Cube-
player GameObject:
using UnityEngine;
using System.Collections;

public class CheckPoints : MonoBehaviour {
 private Vector3 respawnPosition;

 void Start (){
 respawnPosition = transform.position;
 }

 void OnTriggerEnter (Collider hit){
 if(hit.CompareTag("CheckPoint")){
 respawnPosition = transform.position;
 }

 if(hit.CompareTag("Death")){
 transform.position = respawnPosition;
 }
 }
}

13. Run the scene. If the cube runs into a red sphere before crossing a checkpoint, it
will be respawned back to its starting position. Once the red cube has passed a
checkpoint, if a red sphere is hit, then the cube will be moved back to the location
of the most recent checkpoint that it passed through.

Positions, Movement and Navigation for Character GameObjects

328

How it works...
The C# script class called CheckPoints has one variable called respawnPosition, which
is a Vector3 that refers to the position the player's cube is to be moved to (respawned) if it
collides with a Death tagged object. The default setting for this is the position of the player's
cube when the scene begins—so in the Start()method, we set it to the player's position.

Each time an object tagged called CheckPoint is collided with, the value of
respawnPosition is updated to the current position of the player's red cube at this point
in time (that is, where it is when it touches the stretched cube tagged called CheckPoint). So
that the next time the object tagged Death is hit, the cube will be respawned back to where it
last touched the object tagged called CheckPoint.

NPC NavMeshAgent to seek or flee
destination while avoiding obstacles

The introduction of Unity's NavMeshAgent has greatly simplified the coding for NPC and
enemy agent behaviors. In this recipe, we'll add some wall (scaled cubes) obstacles, and
generate a NavMesh, so that Unity knows not to try to walk through the walls. We then add a
NavMeshAgent component to our NPC GameObject, and tell it to head to a stated destination
location by intelligently planning and following a path, while avoiding the wall obstacles.

In the next screenshot, we can see in the Scene panel the squares that represent potential
points on the path. We can also see lines showing the current temporary direction and
destination around the current obstacle.

When the Navigation panel is visible, then the Scene panel displays the blue-shaded
walkable areas, and unshaded, non-walkable areas at the edge of the terrain and around
each of the two wall objects.

Chapter 8

329

Getting ready
This recipe builds upon the player-controlled 3D cube Unity project that you created at the
beginning of this chapter. So, make a copy of this project, open it, and then follow the steps
for this recipe.

How to do it...
To make an object seek or flee from a position, follow these steps:

1. Delete the Cube-player GameObject, since we are going to be creating an NPC
computer controlled agent.

2. Create a sphere named Sphere-arrow that is positioned at (2, 0.5, 2). Scale it as
(1,1,1).

3. Create a second sphere named Sphere-small. Scale it as (0.5, 0.5, 0.5).

4. Child Sphere-small to Sphere-arrow and position it at (0, 0, 0.5).

Positions, Movement and Navigation for Character GameObjects

330

Childing refers to making one GameObject, in the Hierarchy
panel, a child of another GameObject. This is done by dragging
the object that is to be childed over the object to be the parent.
Once completed, the parent-child relationship is indicated
visually by all children being right-indented and positioned
immediately below their parent in the Hierarchy panel. If a
parent object is transformed (moved/scaled/rotated), then all
its children will also be transformed accordingly.

5. In the Inspector panel, add a new NavMeshAgent to Sphere-arrow; choose Add
Component | Navigation | Nav Mesh Agent.

6. Set the Stopping Distance property of NavMeshAgent component to 2.

7. Add the following C# script class called ArrowNPCMovement to GameObject
Sphere-arrow:
using UnityEngine;
using System.Collections;

public class ArrowNPCMovement : MonoBehaviour {
 public GameObject targetGO;
 private NavMeshAgent navMeshAgent;

 void Start (){
 navMeshAgent = GetComponent<NavMeshAgent>();
 HeadForDestintation();
 }

 private void HeadForDestintation (){
 Vector3 destinaton = targetGO.transform.position;
 navMeshAgent.SetDestination (destinaton);
 }
}

8. Ensure that Sphere-arrow is selected in the Inspector panel for the
ArrowNPCMovement scripted component. Drag Capsule-destination over the
variable Projectile called Target GO.

9. Create a 3D cube named Cube-wall at (-6, 0, 0), and scale it to (1, 2, 10).

10. Create another 3D cube named Cube-wall at (-2, 0, 6), and scale it to (1, 2, 7).

11. Display the Navigation panel by choosing Window | Navigation.

Chapter 8

331

A great place to dock the Navigation panel is next to the
Inspector panel since you will never be using the Inspect
and Navigation panels at the same time.

12. In the Hierarchy tab, select both of the Cube-wall objects (we select the objects
that are not supposed to be a part of the walkable parts of our scene), and then
in the Navigation panel, check the Navigation Static checkbox. Then, click on the
Bake button at the bottom of the Navigation panel. When the Navigation panel
is displayed, you'll see a blue tint on the parts of the Scene that are walkable.
Candidate areas for a NavMeshAgent are supposed to be considered as parts
of a path to a destination.

13. Now run your game. You will see the Sphere-arrow GameObject automatically move
towards the Capsule-destination GameObject, following a path that avoids the two
wall objects.

How it works...
The NavMeshAgent component that we added to GameObject Sphere-arrow does most of
the work for us. NavMeshAgents need 2 things: a destination location to head towards, and
a NavMesh component of the terrain with walkable/non-walkable areas, so that it can plan a
path, avoiding obstacles. We created two obstacles (the Cube-wall objects), and these were
selected when we created NavMesh for this scene in the Navigation panel.

The location for our NPC object to travel towards is the position of the Capsule-destination
GameObject at (-12, 0, 8); but of course, we could just move this object in the Scene panel
at Design-time, and its new position would be the destination when we run the game.

Positions, Movement and Navigation for Character GameObjects

332

The C# script class called ArrowNPCMovement has two variables: one is a reference to the
destination GameObject, and the second is a reference to the NavMeshAgent component of
the GameObject in which our instance of the ArrowNPCMovement class is also a component.
When the scene starts, via the Start() method, the NavMeshAgent sibling component is
found, and the HeadForDestination() method is called, which sets the destination of the
NavMeshAgent to the position of the destination GameObject.

Once the NavMeshAgent has a target to head towards, it will plan a path there and will keep
moving until it arrives (or gets within the Stopping Distance if that parameter has been set
to a distance greater than zero).

Ensure that the object with the NavMeshAgent component is selected in
the Hierarchy panel at runtime to be able to see this navigation data in
the Scene panel.

There's more...
There are some details that you don't want to miss.

Constantly updating the NavMeshAgent destination to Player's
character current location
Rather than a destination that is fixed when the scene starts, let's allow the Capsule-
destination object to be moved by the player while the scene is running. In every frame,
we'll get our NPC arrow to reset the NavMeshAgent's destination to wherever the Capsule-
destination has been moved to.

To allow the user movement of the destination object and frame-by-frame updating of
NavMeshAgent destination, we need to do the following:

1. Add an instance of the C# script class called PlayerControl as a component of
Capsule-destination.

2. Update the C# script class called ArrowNPCMovement so that we call the
HeadForDestintation() method every frame, that is, from Update(),
rather than just once in Start():

void Start (){
 navMeshAgent = GetComponent<NavMeshAgent>();
}

void Update (){
 HeadForDestintation();
}

Chapter 8

333

Now, when you run the game, you can use the arrow keys to move the destination location,
and the NavMeshAgent will update its paths in each frame, based on the updated position
of the Capsule-destination GameObject.

Constantly update NavMeshAgent destination to flee away from
Player's character current location
Rather than seeking towards the player's current position, let's make our NPC agent always
attempt to flee away from the player's location. For example, an enemy with very low-health
points might run away, and so gain time to regain its health before fighting again.

To instruct our NavMeshAgent to flee away from the player's location, we need to replace the
C# script class called ArrowNPCMovement with the following:

using UnityEngine;
using System.Collections;

public class ArrowNPCMovement : MonoBehaviour {
 public GameObject targetGO;
 private NavMeshAgent navMeshAgent;
 private float runAwayMultiplier = 2;
 private float runAwayDistance;

 void Start(){
 navMeshAgent = GetComponent<NavMeshAgent>();
 runAwayDistance = navMeshAgent.stoppingDistance *
runAwayMultiplier;
 }

 void Update () {
 Vector3 enemyPosition = targetGO.transform.position;

Positions, Movement and Navigation for Character GameObjects

334

 float distanceFromEnemy = Vector3.Distance(transform.position,
enemyPosition);
 if (distanceFromEnemy < runAwayDistance)
 FleeFromTarget (enemyPosition);
 }

 private void FleeFromTarget(Vector3 enemyPosition){
 Vector3 fleeToPosition = Vector3.Normalize(transform.position -
enemyPosition) * runAwayDistance;
 HeadForDestintation(fleeToPosition);
 }

 private void HeadForDestintation (Vector3 destinationPosition){
 navMeshAgent.SetDestination (destinationPosition);
 }
}

The Start() method caches a reference to the NavMeshAgent component, and also
calculates the runAwayDistance variable to be twice the NavMeshAgent's stopping
distance (although this can be changed by changing the value of the runAwayMultiplier
variable accordingly). When the distance to the enemy is less than the value of this variable,
then we'll instruct the computer-controlled object to flee in the opposite direction.

The Update() method calculates whether the distance to the enemy is within the
runAwayDistance, and if so, it calls the FleeFromTarget(…) method that passes the
location of the enemy as a parameter.

The FleeFromTarget(…) method calculates a point that is the runAwayDistance
Unity units away from the Player's cube, in a direction that is directly away from the
computer-controlled object. This is achieved by subtracting the enemy position vector from
the current transform's position. Finally, the HeadForDestintation(…) method is called,
passing the flee-to position, which results in the NavMeshAgent being told to set the location
as its new destination.

The Unity units are arbitrary, since they are just numbers in a computer.
However, in most cases, it simplifies things to think of distances in terms of
meters (1 Unity unit = 1 meter), and mass in terms of kilograms (1 Unity unit
= 1 kilogram). Of course, if your game is based on a microscopic world, or a
pan-galatic space travel and more, then you need to decide what each Unity
unit corresponds to for your game context. For more discussion of units in
Unity, check out the http://forum.unity3d.com/threads/best-
units-of-measurement-in-unity.284133/#post-1875487 link.

 http://forum.unity3d.com/threads/best-units-of-measurement-in-unity.284133/#post-1875487
 http://forum.unity3d.com/threads/best-units-of-measurement-in-unity.284133/#post-1875487

Chapter 8

335

As the following screenshot illustrates, the NavMeshAgent plans a path to the position to
flee towards:

Create a mini point-and-click game
Another way to choose the destination for our Sphere-arrow GameObject is by the user
clicking on an object on the screen, and then the Sphere-arrow GameObject moving to the
location of the clicked object.

To allow the user to select the destination objects with point-and-click, we need to do
the following:

1. Remove the ArrowNPCMovement component from the Sphere-arrow GameObject.

2. Create some target objects, such as a black cube, a blue sphere, and a green
cylinder. Note that, to be a target, each object needs to have a collider component in
order to receive the OnMouseOver event messages (when creating primitives objects
from the Unity menu Create | 3D Object, the colliders are automatically created).

3. Add an instance of the following C# script class called ClickMeToSetDestination
to each of the GameObjects that you wish to be a clickable target:

using UnityEngine;
using System.Collections;

public class ClickMeToSetDestination : MonoBehaviour {
 private NavMeshAgent playerNavMeshAgent;
 private MeshRenderer meshRenderer;
 private bool mouseOver = false;

 private Color unselectedColor;

 void Start (){

Positions, Movement and Navigation for Character GameObjects

336

 meshRenderer = GetComponent<MeshRenderer>();
 unselectedColor = meshRenderer.sharedMaterial.color;

 GameObject playerGO = GameObject.FindGameObjectWithTag("Play
er");
 playerNavMeshAgent = playerGO.GetComponent<NavMeshAgent>();
 }

 void Update (){
 if (Input.GetButtonDown("Fire1") && mouseOver)
 playerNavMeshAgent.SetDestination(transform.position);
 }

 void OnMouseOver (){
 mouseOver = true;
 meshRenderer.sharedMaterial.color = Color.yellow;
 }

 void OnMouseExit (){
 mouseOver = false;
 meshRenderer.sharedMaterial.color = unselectedColor;
 }
}

Now, while running the game, when your mouse is over one of the three objects, that object
will be highlighted yellow. If you click on the mouse button when the object is highlighted, the
Sphere-arrow GameObject will make its way up to (but stopping just before) the clicked object.

NPC NavMeshAgent to follow the waypoints
in a sequence

Waypoints are often used as a guide to make autonomously moving NPCs and enemies
follow a path in a general way (but be able to respond with other directional behaviors, such
as flee or seek, if friends/predators/prey are sensed nearby). The waypoints are arranged
in a sequence, so that when the character reaches, or gets close to a waypoint, it will then
select the next waypoint in the sequence as the target location to move towards. This recipe
demonstrates an arrow object moving towards a waypoint, and then, when it gets close
enough, it will choose the next waypoint in the sequence as the new target destination. When
the last waypoint has been reached, it again starts heading towards the first waypoint.

Chapter 8

337

Since Unity's NavMeshAgent has simplified coding NPC behavior, our work in this
recipe becomes basically finding the position of the next waypoint, and then telling the
NavMeshAgent that this waypoint is its new destination.

Getting ready
This recipe builds upon the player-controlled 3D cube Unity project that you created at the
beginning of this chapter. So, make a copy of this project, open it, and then follow the steps
for this recipe.

For this recipe, we have prepared the yellow brick texture image that you need in a folder
named Textures in the 1362_08_06 folder.

How to do it...
To instruct an object to follow a sequence of waypoints, follow these steps:

1. Delete the Cube-player GameObject, since we are going to be creating an NPC
computer controlled agent.

Positions, Movement and Navigation for Character GameObjects

338

2. Create a sphere named Sphere-arrow, position at (2, 0.5, 2), and scale it as (1,1,1).

3. Create a second sphere named Sphere-small, and scale it as (0.5, 0.5, 0.5).

4. Child Sphere-small to Sphere-arrow, and then position it at (0, 0, 0.5).

5. In the Inspector, add a new NavMeshAgent to Sphere-arrow, and then choose Add
Component | Navigation | NavMeshAgent.

6. Set the Stopping Distance property of the NavMeshAgent component to 2.

7. Display the Navigation panel by choosing Window | Navigation.

8. Click on the Bake button at the bottom of the Navigation panel. When the
Navigation panel is displayed, you'll see a blue tint on the parts of the Scene panel
that are walkable, which will be all parts of the terrain, except near the edges.

9. Add an instance of the following C# script class called ArrowNPCMovement to the
Sphere-arrow GameObject:
using UnityEngine;
using System.Collections;

public class ArrowNPCMovement : MonoBehaviour {
 private GameObject targetGO = null;
 private WaypointManager waypointManager;
 private NavMeshAgent navMeshAgent;

 void Start (){
 navMeshAgent = GetComponent<NavMeshAgent>();
 waypointManager = GetComponent<WaypointManager>();
 HeadForNextWayPoint();
 }

 void Update (){
 float closeToDestinaton = navMeshAgent.stoppingDistance * 2;
 if (navMeshAgent.remainingDistance < closeToDestinaton){
 HeadForNextWayPoint ();
 }
 }

 private void HeadForNextWayPoint (){
 targetGO = waypointManager.NextWaypoint (targetGO);
 navMeshAgent.SetDestination (targetGO.transform.position);
 }
}

10. Create a new capsule object named Capsule-waypoint-0 at (-12, 0, 8), and give it the
waypoint tag.

Chapter 8

339

11. Copy Capsule-waypoint -0, name the copy as Capsule-waypoint -3, and position this
copy at (8, 0, -8).

We are going to add some intermediate waypoints numbered
1 and 2 later on. This is why our second waypoint here is
numbered 3, in case you were wondering.

12. Add the following C# script class called WaypointManager to the Sphere-arrow
GameObject:
using UnityEngine;

public class WaypointManager : MonoBehaviour {
 public GameObject wayPoint0;
 public GameObject wayPoint3;

 public GameObject NextWaypoint(GameObject current){
 if(current == wayPoint0)
 return wayPoint3;
 else
 return wayPoint0;
 }
}

13. Ensure that Sphere-arrow is selected in the Inspector for the WaypointManager
scripted component. Drag Capsule-waypoint-0 and Capsule-waypoint-3 over the
public variable projectile called Way Point 0 and Way Point 3, respectively.

Positions, Movement and Navigation for Character GameObjects

340

14. Display the Navigation panel by choosing Window | Navigation.

15. Click on the Bake button at the bottom of the Navigation panel. When the
Navigation panel is displayed, you'll see a blue tint on the parts of the Scene
that are walkable, which will be all the parts of the terrain, except near the edges.

16. Now, run your game. The arrow object will first move towards one of the waypoint
capsules, then when it gets close to it, it will slow down, turn around, head towards
the other waypoint capsule, and keep doing that continuously.

How it works...
The NavMeshAgent component that we added to the Sphere-arrow GameObject does most
of the work for us. NavMeshAgents need two things: a destination location to head towards,
and a NavMesh, so that it can plan a path, avoiding obstacles.

We created two possible waypoints to be the location for our NPC to move towards:
Capsule-waypoint-0 and Capsule-waypoint-3.

The C# script class called WaypointManager has one job — to return a reference to the
next waypoint that our NPC should head towards. There are two variables: wayPoint0
and wayPoint3 that reference to the two waypoint GameObjects in our scene. The
NextWaypoint(…) method takes a single parameter named current, which is a reference
to the current waypoint that the object was moving towards (or null). This method's task is to
return a reference to the next waypoint that the NPC should travel towards. The logic for this
method is simple—if current refers to waypoint0, then we'll return waypoint3, otherwise
we'll return waypoint0. Note that if we pass this null method, then we'll get waypoint0
back (so, it is our default first waypoint).

The C# script class called ArrowNPCMovement has three variables: one is a reference to the
destination GameObject named targetGO. The second is a reference to the NavMeshAgent
component of the GameObject in which our instance of the class called ArrowNPCMovement
is also a component. The third variable called WaypointManager is a reference to the sibling
scripted component, an instance of our WaypointManager script class.

When the scene starts, via the Start()method, the NavMeshAgent and
WaypointManager sibling components are found, and the HeadForDestination()
method is called.

The HeadForDestination() method first sets the variable called targetGO to refer to
the GameObject that is returned by a call to NextWaypoint(…) of the scripted component
called WaypointManager (that is, targetGO is set to refer to either Capsule-waypoint-0
or Capsule-waypoint-3). Next, it instructs the NavMeshAgent to make its destination the
position of the targetGO GameObject.

Chapter 8

341

Each frame method called Update() is called. A test is made to see if the distance from the
NPC arrow object is close to the destination waypoint. If the distance is smaller than twice
the stopping distance, set in our NavMeshAgent, then a call is made to WaypointManager.
NextWaypoint(…) to update our target destination to be the next waypoint in the sequence.

There's more...
There are some details that you don't want to miss.

More efficient to avoid using NavMeshes for waypoints
NavMeshes are far superior to waypoints, since a location in a general area (not a specific
point) can be used, and the path finding the algorithm will automatically find the shortest route.
For a succinct recipe (such as the above), we can simplify the implementation of waypoints
using NavMeshes for calculating movements for us. However, for optimized, real-world games
the most common way to move from one waypoint to the next is via linear interpolation, or by
implementing Craig Reynold's Seek algorithm (for details follow the link listed in the Conclusion
section, at the end of this chapter).

Working with arrays of waypoints
Having a separate C# script class called WaypointManager to simply swap between
Capsule-waypoint-0 and Capsule-waypoint-3 may have seemed to be a heavy duty and over-
engineering task, but this was actually a very good move. An object of the script class called
WaypointManager has the job of returning the next waypoint. It is now very straightforward
to add a more sophisticated approach of having an array of waypoints, without us having to
change any code in the script class called ArrowNPCMovement. We can choose a random
waypoint to be the next destination (see the Choosing destinations – find nearest (or a
random) spawnpoint recipe). Or, we can have an array of waypoints, and choose the next
one in the sequence.

To improve our game to work with an array of waypoints in the sequence to be followed,
we need to do the following:

1. Copy Capsule-waypoint-0, name the copy as Capsule-waypoint-1, and position
this copy at (0, 0, 8).

2. Make four more copies (named Capsule-waypoint-1, 2, 4, 5), and position them
as follows:

 � Capsule-waypoint-1: Position = (-2, 0, 8)

 � Capsule-waypoint-2: Position = (8, 0, 8)

 � Capsule-waypoint-4: Position = (-2, 0, -8)

 � Capsule-waypoint-5: Position = (-12, 0, -8)

Positions, Movement and Navigation for Character GameObjects

342

3. Replace the C# script class called WaypointManager with the following code:
using UnityEngine;
using System.Collections;
using System;

public class WaypointManager : MonoBehaviour {
 public GameObject[] waypoints;

 public GameObject NextWaypoint (GameObject current)
 {
 if(waypoints.Length < 1)
 Debug.LogError ("WaypointManager:: ERROR - no waypoints have
been added to array!");

 int currentIndex = Array.IndexOf(waypoints, current);
 int nextIndex = ((currentIndex + 1) % waypoints.Length);
 return waypoints[nextIndex];
 }
}

4. Ensure that Sphere-arrow is selected. In the Inspector panel for the
WaypointManager scripted component set the size of the Waypoints
array to 6. Now, drag in all the six capsule waypoint objects called as
Capsule-waypoint-0/1/2/3/4/5.

5. Run the game. Now, the Sphere-arrow GameObject will first move towards the
waypoint 0 (top left, and then follow the sequence around the terrain).

6. Finally, you can make it look as if the Sphere is following a yellow brick road. Import
the provided yellow brick texture, add this to your terrain, and paint the texture an
oval-shaped path between the waypoints. You may also uncheck the Mesh Rendered
component for each waypoint capsule, so that the user does not see any of the way
points, but just the arrow object following the yellow brick path

In the NextWaypoint(…) method, first we check in case the array is empty, in which case an
error is logged. Next, the array index for the current waypoint GameObject is found (if present
in the array). Finally, the array index for the next waypoint is calculated using a modulus
operator to support a cyclic sequence, returning to the beginning of the array after the last
element has been visited.

Increased flexibility with a WayPoint class
Rather than forcing a GameObject to follow a single rigid sequence of locations, we can make
things more flexible by defining a WayPoint class, whereby each waypoint GameObject has
an array of possible destinations, and each of these has its own array and so on. In this way
a di-graph (directed graph) can be implemented, of which a linear sequence is just one
possible instance.

Chapter 8

343

To improve our game to work with a di-graph of waypoints, do the following:

1. Remove the scripted WayPointManager component from the Sphere-arrow
GameObject.

2. Replace the C# script class called ArrowNPCMovement with the following code:
using UnityEngine;
using System.Collections;

public class ArrowNPCMovement : MonoBehaviour {
 public Waypoint waypoint;
 private bool firstWayPoint = true;
 private NavMeshAgent navMeshAgent;

 void Start (){
 navMeshAgent = GetComponent<NavMeshAgent>();
 HeadForNextWayPoint();
 }

 void Update () {
 float closeToDestinaton = navMeshAgent.stoppingDistance * 2;
 if (navMeshAgent.remainingDistance < closeToDestinaton){
 HeadForNextWayPoint ();
 }
 }

 private void HeadForNextWayPoint (){
 if(firstWayPoint)
 firstWayPoint = false;
 else
 waypoint = waypoint.GetNextWaypoint();

 Vector3 target = waypoint.transform.position;
 navMeshAgent.SetDestination (target);
 }
}

3. Create a new C# script class called WayPoint with the following code:
using UnityEngine;
using System.Collections;

public class Waypoint: MonoBehaviour {

Positions, Movement and Navigation for Character GameObjects

344

 public Waypoint[] waypoints;

 public Waypoint GetNextWaypoint () {
 return waypoints[Random.Range(0, waypoints.Length)];
 }
}

4. Select all the six GameObjects called Capsule-waypoint -0/1/2/3/4/5, and add to
them a scripted instance of C# class called WayPoint.

5. Select the Sphere-arrow GameObject and add to it a scripted instance of C# class
called WayPoint.

6. Ensure that the Sphere-arrow GameObject is selected: in the Inspector panel for
the ArrowNPCMovement scripted component drag Capsule-waypoint-0 into the
Waypoint public variable slot.

7. Now, we need to link Capsule-waypoint-0 to Capsule-waypoint-1, Capsule-waypoint-1
to Capsule-waypoint -2, and so on. Select Capsule-waypoint-0, set its Waypoints
array size to 1, and drag in Capsule-waypoint-1. Next, select Capsule-waypoint-1, set
its Waypoints array size to 1, and drag in Capsule-waypoint-2. Do the following until
you finally link Capsule-waypoint-5 back to Capsule-waypoint-0.

You now have a much more flexible game architecture, allowing GameObjects to randomly
select one of several different paths at each waypoint reached. In this final recipe variation,
we have implemented a waypoint sequence, since each waypoint has an array of just one
linked waypoint. However, if you change the array size to 2 or more, you will then be creating
a graph of linked waypoints, adding random variations in the sequence of waypoints that a
computer controlled character follows for any given run of your game.

Controlling the object group movement
through flocking

A realistic, natural-looking, flocking behavior (for example birds or antelopes or bats) can be
created through creating collections of objects with the following four simple rules:

 f Separation: Avoiding getting too close to neighbors

 f Avoid Obstacle: Turning away from an obstacle immediately ahead

 f Alignment: Moving in the general direction the flock is heading

 f Cohesion: Moving towards the location in the middle of the flock

Chapter 8

345

Each member of the flock acts independently, but needs to know about the current heading
and location of the members of its flock. This recipe shows you how to create a scene with
two flocks of cubes: one flock of green cubes and, one flock of yellow cubes. To keep things
simple, we'll not worry about separation in our recipe.

Getting ready
This recipe builds upon the player-controlled cube Unity project that you created in the first
recipe. So, make a copy of this project, open it, and then follow the steps for this recipe.

How to do it...
To make a group of objects flock together, please follow these steps:

1. Create a Material in the Project panel, and name it as m_green with the Main Color
tinted green.

2. Create a Material in the Project panel, and name it as m_yellow with Main Color
tinted yellow.

3. Create a 3D Cube GameObject named Cube-drone at (0,0,0). Drag the m_yellow
Material into this object.

4. Add a Navigation | NavMeshAgent component to Cube-drone. Set the Stopping
Distance property of the NavMeshAgent component to 2.

5. Add a Physics RigidBody component to Cube-drone with the following properties:

 � Mass is 1

 � Drag is 0

Positions, Movement and Navigation for Character GameObjects

346

 � Angular Drag is 0.05

 � Use Gravity and Is Kinematic are both unchecked

 � Under Constrains Freeze Position for the Y-axis is checked

6. You will see the following Inspector values for your cube's rigid body component:

7. Create the following C# script class called Drone, and add an instance as a
component to the Cube-drone GameObject:
using UnityEngine;
using System.Collections;

public class Drone : MonoBehaviour {
 private NavMeshAgent navMeshAgent;

 void Start() {
 navMeshAgent = GetComponent<NavMeshAgent>();
 }

 public void SetTargetPosition(Vector3 swarmCenterAverage,
Vector3 swarmMovementAverage) {
 Vector3 destination = swarmCenterAverage +
swarmMovementAverage;
 navMeshAgent.SetDestination(destination);
 }
}

8. Create a new empty Prefab named dronePrefabYellow, and from the Hierarchy
panel, drag your Cube-boid GameObject into this Prefab.

9. Now, drag the m_green Material into the Cube-boid GameObject.

Chapter 8

347

10. Create a new empty Prefab named dronePrefabGreen, and from the Hierarchy
panel, drag your Cube-drone GameObject into this Prefab.

11. Delete the Cube-drone GameObject from the Scene panel.

12. Add the following C# script Swarm class to the Main Camera:
using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class Swarm : MonoBehaviour {
 public int droneCount = 20;
 public GameObject dronePrefab;

 private List<Drone> drones = new List<Drone>();

 void Awake() {
 for (int i = 0; i < droneCount; i++)
 AddDrone();
 }

 void FixedUpdate() {
 Vector3 swarmCenter = SwarmCenterAverage();
 Vector3 swarmMovement = SwarmMovementAverage();

 foreach(Drone drone in drones)
 drone.SetTargetPosition(swarmCenter, swarmMovement);
 }

 private void AddDrone() {
 GameObject newDroneGO =
(GameObject)Instantiate(dronePrefab);
 Drone newDrone = newDroneGO.GetComponent<Drone>();
 drones.Add(newDrone);
 }

 private Vector3 SwarmCenterAverage() {
 // cohesion (swarm center point)
 Vector3 locationTotal = Vector3.zero;

 foreach(Drone drone in drones)
 locationTotal += drone.transform.position;

 return (locationTotal / drones.Count);

Positions, Movement and Navigation for Character GameObjects

348

 }

 private Vector3 SwarmMovementAverage() {
 // alignment (swarm direction average)
 Vector3 velocityTotal = Vector3.zero;

 foreach(Drone drone in drones)
 velocityTotal += drone.rigidbody.velocity;

 return (velocityTotal / drones.Count);
 }
}

13. With Main Camera selected in the Hierarchy panel, drag prefab_boid_yellow,
from the Project panel, over the public variable of Drone Prefab.

14. With Main Camera selected in the Hierarchy panel, add a second instance of the
script class called Swarm to this GameObject, and then drag prefab_boid_green,
from the Project panel, over the public variable of Drone Prefab.

15. Create a new Cube named wall-left with the following properties:

 � Position = (-15, 0.5, 0)

 � Scale = (1, 1, 20)

16. Duplicate the wall-left object by naming the new object as wall-right, and
change the position of wall-right to (15, 0.5, 0).

17. Create a new Cube named as wall-top with the following properties:

 � Position = (0, 0.5, 10)

 � Scale = (31, 1, 1)

18. Duplicate the wall-top object by naming the new object as wall-bottom, and
change the position of wall-bottom to (0, 0.5, -10).

19. Create a new Sphere named as Sphere-obstacle with the following properties:

 � Position = (5, 0, 3)

 � Scale = (10, 3, 3)

20. In the Hierarchy panel, select the Sphere-obstacle GameObject. Then in the
Navigation panel, check the Navigation Static checkbox. Then, click on the Bake
button at the bottom of the Navigation panel.

21. Finally, make the player's red cube larger by setting its scale to (3,3,3).

Chapter 8

349

How it works...
The Swarm class contains three variables:

 f droneCount: It is an integer referencing the number of the Swarm class
members created

 f dronePrefab: It references to the Prefab to be cloned to create swarm members

 f Drone: A list of objects that reference drones, a list of all the scripted Drone
components inside all the Swarm objects that have been created

Upon creation, as the scene starts, the Swarm script class Awake() method loops to create
droneCount swarm members by repeatedly calling the AddDrone() method. This method
instantiates a new GameObject from the prefab, and then sets the newDrone variable to
be a reference to the Drone-scripted object, inside the new Swarm class member. In each
frame, the FixedUpdate() method loops through the list of Drone objects by calling
their SetTargetPosition(…) method, and passing in the Swarm center location and the
average of all the swarm member velocities.

The rest of this Swarm class is made up of two methods: one (SwarmCenterAverage)
returns a Vector3 object, representing the average position of all the Drone objects, and
the other (SwarmMovementAverage) returns a Vector3 object, representing the average
velocity (movement force) of all the Drone objects as described in the following list.

 f SwarmMovementAverage():

 � What is the general direction that the swarm is moving in?

 � This is known as alignment—a swarm member attempting to move in the
same direction as the swarm average

 f SwarmCenterAverage():

 � What is the center position of the swarm?

 � This is known as cohesion—a swarm member attempting to move towards
the center of the swarm

The core work is undertaken by the Drone class. Each drone's Start(…) method finds and
caches a reference to its NavMeshAgent component.

Each drone's UpdateVelocity(…) method takes as input two Vector3 arguments:
swarmCenterAverage and swarmMovementAverage. This method then calculates the
desired new velocity for this Drone (by simply adding the two vectors), and then uses the
result (a Vector3 location) to update the NavMeshAgent's target location.

Positions, Movement and Navigation for Character GameObjects

350

There's more...
There are some details that you don't want to miss.

Learn more about flocking Artificial Intelligence
Most of the flocking models in modern computing owe much to the work of Craig Reynolds in
the 1980s. Learn more about Craig and his boids program at http://en.wikipedia.org/
wiki/Craig_Reynolds_(computer_graphics).

Conclusion
In this chapter, we have introduced recipes demonstrating a range of player and computer
controlled characters, vehicles, and objects. Player character controllers are fundamental
to the usability experience of every game, while the NPC objects and characters add rich
interactions to many games:

 f Learn more about Unity NavMeshes from this Unity tutorial, which is available
at http://unity3d.com/learn/tutorials/modules/beginner/live-
training-archive/navmeshes

 f Learn more about the Unity 2D character controllers at http://unity3d.com/
learn/tutorials/modules/beginner/2d/2d-controllers

 f Learn lots about the computer-controlled moving GameObjects from the classic
paper entitled Steering Behaviors For Autonomous Characters by Craig W. Reynolds,
presented at the GDC-99 (Game Developer's Conference) at http://www.red3d.
com/cwr/steer/gdc99/

 f Learn about the Unity 3D character component and control at:
 � http://docs.unity3d.com/Manual/class-CharacterController.

html

 � http://unity3d.com/learn/tutorials/projects/survival-
shooter/player-character

Every game needs textures—here are some of the sources of free textures suitable for
many games:

 f CG Textures are available at http://www.cgtextures.com/

 f Naldz Graphics blog are available at http://naldzgraphics.net/textures/

http://en.wikipedia.org/wiki/Craig_Reynolds_(computer_graphics)
http://en.wikipedia.org/wiki/Craig_Reynolds_(computer_graphics)
http://unity3d.com/learn/tutorials/modules/beginner/live-training-archive/navmeshes
http://unity3d.com/learn/tutorials/modules/beginner/live-training-archive/navmeshes
http://unity3d.com/learn/tutorials/modules/beginner/2d/2d-controllers
http://unity3d.com/learn/tutorials/modules/beginner/2d/2d-controllers
http://www.red3d.com/cwr/steer/gdc99/
http://www.red3d.com/cwr/steer/gdc99/
http://docs.unity3d.com/Manual/class-CharacterController.html
http://docs.unity3d.com/Manual/class-CharacterController.html
http://unity3d.com/learn/tutorials/projects/survival-shooter/player-character
http://unity3d.com/learn/tutorials/projects/survival-shooter/player-character
http://www.cgtextures.com/
http://naldzgraphics.net/textures/

Chapter 9

351

9
Playing and

Manipulating Sounds

In this chapter, we will cover:

 f Matching the audio pitch to the animation speed

 f Simulating acoustic environments with Reverb Zones

 f Preventing an Audio Clip from restarting if it is already playing

 f Waiting for audio to finish playing before auto-destructing an object

 f Adding volume control with Audio Mixers

 f Making a dynamic soundtrack with Snapshots

 f Balancing in-game audio with Ducking

Playing and Manipulating Sounds

352

Introduction
Sound is a very important part of the gaming experience. In fact, we can't stress enough how
crucial it is to the player's immersion in a virtual environment. Just think of the engine running
in your favorite racing game, the distant urban buzz in a simulator game, or the creeping
noises in horror games. Think of how these sounds transport you into the game.

The big picture
Before getting on with the recipes, let's step back and have a quick review on how sound
works on Unity 5.

Audio files can be embedded into GameObjects through the Audio Source component. Unity
supports 3D sounds, which means that the location and distance between the audio sources
and Audio Listener matter in the way the sound is perceived in terms of loudness and the
left/right balance. This is unless the audio source is specified as 2D sound (which is usually
the case for the background soundtrack music).

Although all sound is sent to the scene's Audio Listener (a component that is usually attached
to the Main Camera, and that shouldn't be attached simultaneously on more than one
object), Unity 5 brings a new player to the audio scene: the Audio Mixer. The Audio mixer
radically changes the way in which sound elements can be experienced and worked with. It
allows developers to mix and arrange audio pretty much in the same way that musicians and
producers do in their Digital Audio Workstations (D.A.W), such as GarageBand or ProTools.
It allows you to route audio source clips into specific channels that can have their volumes
individually adjusted and processed by customized effects and filters. You can work with
multiple Audio Mixers, send a mixer's output to a parent mixer, and save mix preferences
as Snapshots. Also, you can access mixer parameters from scripting. The following figure
represents the main Unity 5 audio mixing concepts and their relationships:

Chapter 9

353

Taking advantage of the new Audio Mixer feature in many example projects, this chapter is
filled with recipes that will hopefully help you implement a better and more efficient sound
design for your projects, augmenting the player's sense of immersion, transporting him or
her into the game environment, and even improving the gameplay.

Matching the audio pitch to the animation
speed

Many artifacts sound higher in pitch when accelerated and lower when slowed down. Car
engines, fan coolers, Vinyl—a record player… the list goes on. If you want to simulate this
kind of sound effect in an animated object that can have its speed changed dynamically,
follow this recipe.

Getting ready
For this recipe, you'll need an animated 3D object and an audio clip. Please use the files
animatedRocket.fbx and engineSound.wav, available in the 1362_09_01 folder
of the code bundle.

Playing and Manipulating Sounds

354

How to do it...
To change the pitch of an audio clip according to the speed of an animated object, please
follow these steps:

1. Import the animatedRocket.fbx file into your Project.

2. Select the animatedRocket file in the Project view. Then, from the Inspector
view, check its Import Settings. Select Animations, then select the clip Take 001,
and make sure to check the Loop Time option. Click on the Apply button, shown as
follows, to save the changes:

The reason why we didn't need to check Loop Pose option
is because our animation already loops in a seamless
fashion. If it didn't, we could have checked that option to
automatically create a seamless transition from the last to
the first frame of the animation.

Chapter 9

355

3. Add the animatedRocket GameObject to the scene by dragging it from the Project
view into the Hierarchy view.

4. Import the engineSound.wav audio clip.

5. Select the animatedRocket GameObject. Then, drag engineSound from the Project
view into the Inspector view, adding it as an Audio Source for that object.

6. In the Audio Source component of animatedRocket, check the box for the Loop
option, as shown in the following screenshot:

7. We need to create a Controller for our object. In the Project view, click Create and
select Animator Controller. Name it as rocketlController.

8. Double-click on rocketController object to open the Animator window, as shown.
Then, right-click on the gridded area and select the Create State | Empty option,
from the contextual menu:

Playing and Manipulating Sounds

356

9. Name the new state spin and set Take 001 as its motion in the Motion field:

10. From the Hierarchy view, select animatedRocket. Then, in the Animator component
(in the Inspector view), set rocketController as its Controller and make sure that the
Apply Root Motion option is unchecked as shown:

11. In the Project view, create a new C# Script and rename it to ChangePitch.

12. Open the script in your editor and replace everything with the following code:
using UnityEngine;

public class ChangePitch : MonoBehaviour{
 public float accel = 0.05f;
 public float minSpeed = 0.0f;
 public float maxSpeed = 2.0f;
 public float animationSoundRatio = 1.0f;
 private float speed = 0.0f;
 private Animator animator;
 private AudioSource audioSource;

 void Start(){
 animator = GetComponent<Animator>();
 audioSource = GetComponent<AudioSource>();
 speed = animator.speed;

Chapter 9

357

 AccelRocket (0f);
 }

 void Update(){
 if (Input.GetKey (KeyCode.Alpha1))
 AccelRocket(accel);

 if (Input.GetKey (KeyCode.Alpha2))
 AccelRocket(-accel);
 }

 public void AccelRocket(float accel){
 speed += accel;
 speed = Mathf.Clamp(speed,minSpeed,maxSpeed);
 animator.speed = speed = Mathf.Clamp (speed, 0, maxSpeed);
 float soundPitch = animator.speed * animationSoundRatio;
 audioSource.pitch = soundPitch;
 }
}

13. Save your script and add it as a component to animatedRocket GameObject.

14. Play the scene and change the animation speed by pressing key 1 (accelerate) and 2
(decelerate) on your alphanumeric keyboard. The audio pitch will change accordingly.

How it works...
At the Start() method, besides storing the Animator and AudioSource components in
variables, we'll get the initial speed from the Animator, and we'll call the AccelRocket()
function by passing 0 as an argument, only for that function to calculate the resulting pitch
for the Audio Source. During Update() function, the lines of the if(Input.GetKey
(KeyCode.Alpha1)) and if(Input.GetKey (KeyCode.Alpha2)) code detect whenever
the 1 or 2 keys are being pressed on the alphanumeric keyboard to call the AccelRocket()
function, passing a accel float variable as an argument. The AccelRocket() function, in
its turn, increments speed with the received argument (the accel float variable). However, it
uses the Mathf.Clamp()command to limit the new speed value between the minimum and
maximum speed as set by the user. Then, it changes the Animator speed and Audio Source
pitch according to the new speed absolute value. The value is clamped a second time to avoid
negative numbers. Should you reverse the animation, check out a solution in the completed
project included with the code files. Also, please note that setting the animation speed and
therefore, the sound pitch to 0 will cause the sound to stop, making it clear that stopping the
object's animation also prevents the engine sound from playing.

Playing and Manipulating Sounds

358

There's more...
Here is some information on how to fine-tune and customize this recipe.

Changing the Animation/Sound Ratio
If you want the audio clip pitch to be more or less affected by the animation speed, change
the value of the Animation/Sound Ratio parameter.

Accessing the function from other scripts
The AccelRocket() function was made public so that it can be accessed from other scripts.
As an example, we have included the ExtChangePitch.cs script in 1362_09_01 folder. Try
attaching this script to the Main Camera object and use it to control the speed by clicking on
the left and right mouse buttons.

Simulating acoustic environments with
Reverb Zones

Once you have created your level's geometry and the scene is looking just the way you want
it to, you might want your sound effects to correspond to that look. Sound behaves differently
depending upon the environment in which it is projected, so it can be a good idea to make
it reverberate accordingly. In this recipe, we will address this acoustic effect by using
Reverb Zones.

Getting ready
For this recipe, we have prepared the ReverbZone.unitypackage file, containing a basic
level named reverbScene and the Signal prefab. The package is in the 1362_09_02
folder in the code bundle.

How to do it...
Follow these steps to simulate the sonic landscape of a tunnel:

1. Import the ReverbZone package into your Unity Project.

Chapter 9

359

2. In the Project view, open the reverbScene level, inside the ReverbZones folder. This
is a basic scene, featuring a controllable character and a tunnel.

3. Now, drag the Signal prefab from the Project view into Hierarchy, as shown in the
following screenshot. This will add a sound-emitting object to the scene. Place it in
the center of the tunnel.

Playing and Manipulating Sounds

360

4. Make five copies of the Signal GameObject and distribute them across the tunnel
(leaving a copy just outside each entrance):

5. In in the Hierarchy view, navigate to Create | Audio | Audio Reverb Zone to add a
Reverb Zone to the scene. Then, place it in the center of the tunnel.

6. Select the Reverb Zone GameObject. In the Inspector view, change the Reverb Zone
component parameters to these values: Min Distance: 6; Max Distance: 18; and
Preset: StoneCorridor as shown in the following screenshot:

Chapter 9

361

7. Play the scene and walk through the tunnel using the W A S D keys (and pressing
Shift to run). You will hear the audio reverberate when inside the Reverb Zone area.

How it works...
Once positioned, the Audio Reverb Zone applies an audio filter to all audio sources within
its radius.

There's more...
Here are more options for you to try.

Attaching the Audio Reverb Zone component to Audio Sources
Instead of creating an Audio Reverb Zone GameObject, you can attach it to the sound
emitting object (in our case, Signal) as a component through the Component | Audio |
Audio Reverb Zone menu. In this case, the Reverb Zone will be individually set up around
the object.

Making your own Reverb settings
Unity comes with several Reverb Presets. We have used StoneCorridor, but your scene can
ask for something less intense (such as Room) or more radical (such as Psychotic). If these
presets still won't be able to recreate the effect that you have in mind, change it to User and
edit its parameters as you wish.

Preventing an Audio Clip from restarting if it
is already playing

In a game, there may be several different events that cause a sound to start playing. If
the sound is already playing, then in almost all cases, we won't wish to restart the sound.
This recipe includes a test, so that an Audio Source component is only sent a Play()
message if it is currently not playing.

Getting ready
Try this with any audio clip that is one second or longer in duration. We have included the
engineSound audio clip inside the 1362_09_03 folder.

Playing and Manipulating Sounds

362

How to do it...
To prevent an Audio Clip from restarting, follow these steps:

1. Create an Empty GameObject and rename it to AudioObject. Then, add an Audio
Source component to this object (in the Component | Audio | Audio Source menu).

2. Import the engineSound audio clip and drag it from the Project view to populate the
Audio Clip parameter of the Audio Source component of AudioObject:

3. Create a UI button named PlaySoundButton on the screen and attach the following
script to this button:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;
public class AvoidEarlySoundRestart : MonoBehaviour {
 public AudioSource audioSource;
 public Text message;

 void Update(){
 string statusMessage = "Play sound";
 if(audioSource.isPlaying)
 statusMessage = "(sound playing)";
 message.text = statusMessage;
 }

 // button click handler
 public void PlaySoundIfNotPlaying(){
 if(!audioSource.isPlaying)
 audioSource.Play();
 }
}

Chapter 9

363

4. With PlaySoundButton selected in the Hierarchy panel, drag AudioObject into
the Inspector view for the public Audio Source variable, and drag the Text child
of PlaySoundButton for the public ButtonText:

5. With PlaySoundButton selected in the Hierarchy panel, create a new on-click event
handler, dragging the PlaySoundButton into the Object slot, and selecting the
PlaySoundIfNotPlaying() function.

How it works...
The Audio Source components have a public readable property isPlaying, which is a Boolean
true/false flag, indicating if the sound is currently playing. The text of the button is set to
display Play Sound when the sound is not playing, and (sound playing) when it is. When
the button is clicked, the PlaySoundIfNotPlaying() method is called. This method
uses an if statement, ensuring that a Play() message is only sent to the Audio Source
component if its isPlaying is false.

See also
 f The Waiting for the audio to finish before auto-destructing an object recipe in

this chapter.

Waiting for audio to finish playing before
auto-destructing an object

An event may occur (such as an object pickup or the killing of an enemy) that we wish to notify
to the player by playing an audio clip, and an associated visual object (such as an explosion
particle system, or a temporary object in the location of the event). However, as soon as the
clip has finished playing, we will wish for the visual object to be removed from the scene.
This recipe provides a simple way to link the ending of a playing audio clip with the automatic
destruction of its containing object.

Getting ready
Try this with any audio clip that is a second or more in duration. We have included the
engineSound audio clip inside the 1362_09_04 folder.

Playing and Manipulating Sounds

364

How to do it...
To wait for audio to finish playing before destroying a GameObject, follow these steps:

1. Create an Empty GameObject and rename it to AudioObject. Then, add an Audio
Source component to this object (in the Component | Audio | Audio Source menu).

2. Import the engineSound audio clip and drag it from the Project view to populate the
Audio Clip parameter of the Audio Source component of AudioObject, and deselect
the component's Play On Awake checkbox:

3. Add the following script class to AudioObject:
using UnityEngine;
using System.Collections;

public class AudioDestructBehaviour : MonoBehaviour {
 private AudioSource audioSource;

 void Start(){
 audioSource = GetComponent<AudioSource>();
 }

 private void Update(){
 if(!audioSource.isPlaying)
 Destroy(gameObject);
 }
}

Chapter 9

365

4. In Inspector view, disable (un-check) the AudioDestructBehaviour scripted
component of AudioObject (when needed, it will be re-enabled via C# code):

5. Create a new C# file named ButtonActions, containing the following code:
using UnityEngine;
using System.Collections;

public class ButtonActions : MonoBehaviour{
 public AudioSource audioSource;
 public AudioDestructBehaviour audioDestructScriptedObject;

 public void PlaySound(){
 if(!audioSource.isPlaying)
 audioSource.Play();
 }

 public void DestroyAfterSoundStops(){
 audioDestructScriptedObject.enabled = true;
 }
}

6. Create a UI button named PlaySoundButton on the screen with a button Play
Sound text, and attach the ButtonActions script to this button.

7. With PlaySoundButton selected in the Hierarchy, create a new on-click event
handler, dragging PlaySoundButton into the Object slot, and selecting the
PlaySound() function.

8. With the PlaySoundButton selected in the Hierarchy panel, drag AudioObject
into the Inspector view for the public Audio Source variable AudioObject.
Also, drag AudioObject into the Inspector view for the public Script variable
AudioDestructScriptedObject, shown as follows:

Playing and Manipulating Sounds

366

9. Create a second UI button named DestoryWhenSoundFinishedButton on screen,
with the button text Destroy When Sound Finished, and attach the ButtonActions
script to this button.

10. With DestoryWhenSoundFinishedButton selected in the Hierarchy panel, create a
new on-click event handler, dragging PlaySoundButton into the GO slot, and then
selecting the DestroyAfterSoundStops() function.

11. Just as you did with the other button, now the DestoryWhenSoundFinishedButton
selected in the Hierarchy panel, drag AudioObject into the Inspector view for the
public Script variable MyAudioDestructObect.

How it works...
The GameObject named AudioObject contains an Audio Source component, which stores
and manages the playing of the audio clip. AudioObject also contains a scripted component,
which is an instance of the AudioDestructBehaviour class. This script is initially disabled.
When enabled, every frame this object (via its Update() method) tests whether the audio
source is not playing (!audio.isPlaying). As soon as the audio is found to be not playing,
the GameObject is destroyed.

There are two UI buttons created. Button PlaySoundButton calls the PlaySound() method.
This method will start playing the audio clip, if it is not already playing.

The second button called DestoryWhenSoundFinishedButton calls the
DestoryAfterSoundStops() method. This method enables the scripted component
AudioDestructBehaviour in GameObject AudioObject—so that that GameObject will be
destroyed, once the sound has finished playing.

See also
 f The Preventing an Audio Clip from restarting if it is already playing recipe in

this chapter

Adding volume control with Audio Mixers
Sound volume adjustment can be a very important feature, especially if your game is a
standalone. After all, it can be very frustrating to access the operational system volume
control. In this recipe, we will use the new Audio Mixer feature to create independent volume
controls for Music and Sound FX.

Chapter 9

367

Getting ready
For this recipe, we have provided a Unity package named Volume.unitypackage,
containing an initial scene featuring soundtrack music and sound effects. The file is
available inside the 1362_09_05 folder.

How to do it...
To add volume control sliders to your scene, follow these steps:

1. Import Volume.unitypackage into your project.

2. Open the Volume scene (available in the Assets | Volume folder). Play the scene and
walk towards the semitransparent green wall in the tunnel, using the W A S D keys
(while pressing the Shift key to run). You will be able to listen to:

 � A looping soundtrack music

 � Bells ringing

 � A robotic speech whenever the character collides with the wall

3. From the Project view, use the Create drop-down menu to add Audio Mixer to the
project. Name it MainMixer. Double-click on it to open the Audio Mixer window.

4. From the Groups view, highlight Master and click the + sign to add a child to the
Master group. Name it Music. Then, highlight Master again and add a new child
group named FX, as shown in the following screenshot:

Playing and Manipulating Sounds

368

5. From the Mixers view, highlight MainMixer and click the + sign to add a new Mixer
to the project. Name it MusicMixer. Then, drag it into the MainMixer and select the
Music group as its Output. Repeat the operation to add a mixer named FxMixer to
the project by selecting the FX group as its output:

6. Now, select MusicMixer. Select its Master group and add a child named Soundtrack.
Then, select FxMixer and add two children to its Master group: one named Speech,
and another named Bells, as shown:

Chapter 9

369

7. From the Hierarchy view, select the DialogueTrigger object. Then, in the Inspector
view, change its Output track to FxMixer | Speech in the Audio Source component:

8. Now, select the Soundtrack GameObject. From the Inspector view, find the Audio
Source component and change its Output track to MusicMixer | Soundtrack:

Playing and Manipulating Sounds

370

9. Finally, from the Assets folder in the Project view, select the Signal prefab . From
the Inspector view, access its Audio Source component and change its Output to
FxMixer | Bells:

10. From the Audio Mixer window, choose MainMixer and select its Master track. Then,
from the Inspector view, right-click on Volume in the Attenuation component. From
the context menu, select Expose 'Volume (of Master) to script as shown in the
following screenshot. Repeat the operation for the Music and FX tracks:

Chapter 9

371

11. From the top of the Audio Mixer with the MainMixer selected, access the Exposed
Parameters drop-down menu. Then, right-click on MyExposedParam and rename
it to OverallVolume. Then, rename MyExposedParam1 as MusicVolume and
MyExposedParam2 as FxVolume.

12. From the Project view, create a new C# Script and rename it to VolumeControl.

13. Open the script in your editor and replace everything with the following code:
using UnityEngine;

using UnityEngine.Audio;
using System.Collections;

public class VolumeControl : MonoBehaviour{
 public AudioMixer myMixer;
 private GameObject panel;
 private bool isPaused = false;

 void Start(){
 panel = GameObject.Find("Panel");
 panel.SetActive(false);
 }

 void Update() {
 if (Input.GetKeyUp (KeyCode.Escape)) {
 panel.SetActive(!panel.activeInHierarchy);

 if(isPaused)
 Time.timeScale = 1.0f;
 else
 Time.timeScale = 0.0f;

 isPaused = !isPaused;
 }
 }

 public void ChangeMusicVol(float vol){
 myMixer.SetFloat ("MusicVolume", Mathf.Log10(vol) *
20f);
 }

Playing and Manipulating Sounds

372

 public void ChangeFxVol(float vol){
 myMixer.SetFloat ("FxVolume", Mathf.Log10(vol) * 20f);
 }

 public void ChangeOverallVol(float vol){
 myMixer.SetFloat ("OverallVolume", Mathf.Log10(vol) * 20f);
 }
}

14. From the Hierarchy view, use the Create dropdown menu to add a Panel to the scene
(Create | UI | Panel). Note that it will automatically add a Canvas to the scene.

15. From the Hierarchy view, use the Create dropdown menu to add a Slider to the
scene (Create | UI | Slider). Make it a child of the Panel object.

16. Rename the slider as OverallSlider. Duplicate it and rename the new copy to
MusicSlider. Then, in the Inspector view, Rect Transform component, change
its Pos Y parameter to -40.

17. Duplicate MusicSlider and rename the new copy to FxSlider. Then, change its Pos Y
parameter to -70:

18. Select the Canvas GameObject and add the VolumeControl script to it. Then,
populate the MyMixer field of Volume Control with MainMixer:

Chapter 9

373

19. Select the OverallSlider component. From the Inspector view at the Slider component,
change Min Value to 0.000025 (or 2.5e-05). Then, below the On Value Changed list,
click the + sign to add an action. From Hierarchy panel, drag Canvas into the Object
slot and using the drop-down menu, choose VolumeControl | ChangeOverallVol
option, as shown in the following screenshot, For testing purposes, change the
appropriate selector from Runtime Only to Editor and Runtime.

20. Repeat the previous step with MusicSlider and FxSlider, but this time, choose
ChangeMusicVol and ChangeFxVol options respectively from the drop-down menu.

21. Play the scene. You will be able to access the sliders when pressing Escape on your
keyboard and adjust volume settings from there.

Playing and Manipulating Sounds

374

How it works...
The new Audio Mixer feature works in a similar fashion to Digital Audio Workstations, such
as Logic and Sonar. Through Audio Mixers, you can organize and manage audio elements by
routing them into specific groups that can have individual audio tracks to be tweaked around,
allowing for adjustments in volume level and sound effects.

By organizing and routing our audio clips into two groups (Music and FX), we established the
MainMixer as a unified controller for volume. Then, we have used the Audio Mixer to expose
the volume levels for each track of the MainMixer, making them accessible to our script.

Also, we have set up a basic GUI featuring three sliders that, when in use, will pass their
float values (between 0.000025 and 1) as arguments to three specific functions in our
script: ChangeMusicVol, ChangeFxVol, and ChangeOverallVol. These functions, on
their turn, use the SetFloat command to effectively change the volume levels at runtime.
However, before passing on the new volume levels, the script converts linear values (between
0.000025 and 1) to the decibel levels that are used by the Audio Mixer. This conversion is
calculated through the log(x) * 20 mathematical function.

For a full explanation on issues regarding the conversion of linear values to
decibel levels and vice-versa, check out Aaron Brown's excellent article at
http://www.playdotsound.com/portfolio-item/decibel-
db-to-float-value-calculator-making-sense-of-linear-
values-in-audio-tools/.

It's worth mentioning that the VolumeControl script also includes code to enable and
disable the GUI and the EventSystem, depending upon if the player hits the Escape key
to activate/deactivate the volume control sliders.

A very important note—do not change the volume of any MainMixer's tracks; leave them at
0 dB. The reason is that our VolumeControl script sets their maximum volume level. For
general adjustments, use the secondary Mixers MusicMixer and FxMixer.

There's more...
Here is some extra information on Audio Mixers.

Playing with Audio Production
There are many creative uses for exposed parameters. We can, for instance, add effects such
as Distortion, Flange, and Chorus to audio channels, allowing users to operate virtual sound
tables/mixing boards.

http://www.playdotsound.com/portfolio-item/decibel-db-to-float-value-calculator-making-sense-of-linear-values-in-audio-tools/
http://www.playdotsound.com/portfolio-item/decibel-db-to-float-value-calculator-making-sense-of-linear-values-in-audio-tools/
http://www.playdotsound.com/portfolio-item/decibel-db-to-float-value-calculator-making-sense-of-linear-values-in-audio-tools/

Chapter 9

375

See also
 f The Making a dynamic soundtrack with Snapshots recipe in this chapter

 f The Balancing the in-game audio with Ducking in this chapter

Making a dynamic soundtrack with
Snapshots

Dynamic soundtracks are the ones that change according to what is happening to the player
in the game, musically reflecting that place or moment of the character's adventure. In this
recipe, we will implement a soundtrack that changes twice; the first time when entering a
tunnel, and the second time when coming out of its end. To achieve this, we will use the new
Snapshot feature of the Audio Mixer.

Snapshots are a way of saving the state of your Audio Mixer, keeping your preferences for
volume levels, audio effects, and more. We can access these states through script, creating
transitions between mixes, and by bringing up the desired sonic ambience for each moment
of the player's journey.

Getting ready
For this recipe, we have prepared a basic game level, contained inside the Unity package
named DynamicSoundtrack, and two soundtrack audio clips in .ogg format: Theme01_
Percussion and Theme01_Synths. All these files can be found in the 1362_09_06 folder.

How to do it...
To make a dynamic soundtrack, follow these steps:

1. Import the DynamicSoundtrack package and both .ogg files to your Unity Project.

2. Open the level named Dynamic.

3. From the Project view, use the Create drop-down menu to add Audio Mixer to the
project. Name it MusicMixer. Double-click on it to open the Audio Mixer window.

Playing and Manipulating Sounds

376

4. From the Groups view, highlight Master and click the + sign to add a child to the
Master group. Name it as Music. Then, add two child groups to Music: Percussion
and Synths:

5. From the Hierarchy view, create a new Empty GameObject. Name it Music. Then,
add two Empty Child GameObjects to it. Name them as Percussion and Synth.

6. From the Project view, drag the Audio Clip named Theme01_Percussion into the
Percussion GameObject in Hierarchy. Select Percussion and in the Inspector view,
access the Audio Source component. Change its Output to Percussion (MusicMixer),
make sure the Play On Awake option is checked, check the Loop option, and make
sure its Spatial Blend is set to 2D, as shown in the following screenshot:

Chapter 9

377

7. Now, drag the Theme01_Synths audio file into the Synths GameObject. From the
Inspector view, change its Output to Synths (MusicMixer), make sure the Play On
Awake option is checked, check the Loop option, and make sure its Spatial Blend
is set to 2D, as shown:

8. Open the Audio Mixer and play the scene. We will now use the mixer to set the
soundtrack for the start of the scene. With the scene playing, click on the Edit in Play
Mode button, as shown in the screenshot, at the top of the Audio Mixer. Then, drop
the volume on the Synths track down to -30 dB:

Playing and Manipulating Sounds

378

9. Now, select the Percussion track. Right-click on Attenuation and add the High-pass
effect before it:

10. From the Inspector view, change the Cutoff frequency of the High-pass effect to
544.00 Hz:

11. Every change, so far, has been assigned to the current Snapshot. From the Snaphots
view, right-click on the current Snapshot and rename it to Start. Then, right-click on
Start and select the Duplicate option. Rename the new snapshot as Tunnel, as shown:

Chapter 9

379

12. Select the Tunnel snapshot. Then, from the Inspector view, change the Cutoff
frequency of the Highpass effect to 10.00 Hz:

13. Switch between the Tunnel and Start snapshots. You'll be able to hear the difference.

14. Duplicate the Tunnel snapshot, rename it as OtherSide, and select it.

15. Raise the volume of the Synths track up to 0 dB:

16. Now that we have our three Snapshots, it's time to create triggers to make transitions
among them. From the Hierarchy view, use the Create drop-down menu to add a
Cube to the scene (Create | 3D Object | Cube).

Playing and Manipulating Sounds

380

17. Select the new Cube and rename it SnapshotTriggerTunnel. Then, from the
Inspector view, access the Box Collider component and check the Is Trigger option,
as shown in the following screenshot. Also, uncheck its Mesh Renderer component.
Finally, adjust its size and position to the scene tunnel's interior:

18. Make two copies of SnapshotTriggerTunnel and rename them to
SnapshotTriggerStart and SnapshotTriggerOtherSide. Then, adjust their
size and position, so that they occupy the areas before the tunnel's entrance (where
the character is) and after its other end, as shown in the following screenshot:

Chapter 9

381

19. In the Project view, create a new C# Script file and rename it to SnapshotTrigger.

20. Open the script in your editor and replace everything with the following code:
using UnityEngine;
using UnityEngine.Audio;
using System.Collections;

public class SnapshotTrigger : MonoBehaviour{
 public AudioMixerSnapshot snapshot;
 public float crossfade;

 private void OnTriggerEnter(Collider other){
 snapshot.TransitionTo (crossfade);
 }
}

21. Save your script and attach it to SnapshotTriggerTunnel,
SnapshotTriggerStart, and SnapshotTriggerOtherSide objects.

22. Select SnapshotTriggerTunnel. Then, from the Inspector view, access the
Snapshot Trigger component, setting Snapshot as Tunnel, and Crossfade as 2,
as shown in the following screenshot:

23. Make changes to SnapshotTriggerStart and SnapshotTriggerOtherSide by
setting their Snapshots to Start and OtherSide respectively.

24. Test the scene. The background music will change as the character moves from its
starting point, through the tunnel, and into the other side.

Playing and Manipulating Sounds

382

How it works...
The Snapshot feature allows you to save Audio Mixer states (including all volume levels, every
filter setting, and so on) so that you can change those mixing preferences at runtime, making
the audio design more suitable for specific locations or gameplay settings. For this recipe, we
have created three Snapshots for different moments in the player's journey: before entering
the tunnel, inside the tunnel, and outside the tunnel. We have used the Highpass filter to
make the initial Snapshot less intense. We have also turned the Synths track volume up to
emphasize the open environment outside the tunnel. Hopefully, changes in the audio mix will
collaborate with setting the right mood for the game.

To activate our snapshots, we have placed trigger colliders, featuring our Snapshot Trigger
component in which we set the desired Snapshot and the time in seconds, that it takes to make
the transition (a crossfade) between the previous Snapshot and the next. In fact, the function in
our script is really this straightforward—the line of snapshot.TransitionTo (crossfade)
code simply starts a transition lasting crossfade seconds to the desired Snapshot.

There's more...
Here is some information on how to fine-tune and customize this recipe.

Reducing the need for multiple audio clips
You might have noticed how different the Theme01_Percussion audio clip sounds when
the Cutoff frequency of the High-pass filter is set as 10.00 Hz. The reason for this is that
the high-pass filter, as its name suggests, cuts off lower frequencies of the audio signal.
In this case, it attenuated the bass drum down to inaudible levels while keeping the shakers
audible. The opposite effect can be achieved through the Lowpass filter. A major benefit is
the opportunity of virtually having two separate tracks into the same audio clip.

Dealing with audio file formats and compression rates
To avoid loss of audio quality, you should import your sound clips using the appropriate file
format, depending upon your target platform. If you are not sure which format to use, please
check out Unity's documentation on the subject at http://docs.unity3d.com/Manual/
AudioFiles.html.

Applying Snapshots to background noise
Although we have applied Snapshots to our music soundtrack, background noise can also
benefit immensely. If your character travels across places that are significantly different,
transitioning from open spaces to indoor environments, you should consider applying
snapshots to your environment audio mix. Be careful, however, to create separate Audio
Mixers for Music and Environment—unless you don't mind having musical and ambient
sound tied to the same Snapshot.

http://docs.unity3d.com/Manual/AudioFiles.html
http://docs.unity3d.com/Manual/AudioFiles.html

Chapter 9

383

Getting creative with effects
In this recipe, we have mentioned the High-pass and Low-pass filters. However, there are
many effects that can make audio clips sound radically different. Experiment! Try applying
effects such as Distortion, Flange, and Chorus. In fact, we encourage you to try every
effect, playing with their settings. The creative use of these effects can bring out different
expressions to a single audio clip.

See also
 f The Adding volume control with Audio Mixers recipe in this chapter

 f The Balancing soundtrack volume with Ducking recipe in this chapter

Balancing in-game audio with Ducking
As much as the background music can be important in establishing the right atmosphere,
there will be times when other audio clips should be emphasized, and the music volume
turned down for the duration of that clip. This effect is known as Ducking. Maybe you will
need it for dramatic effect (simulating hearing loss after an explosion took place), or maybe
you want to make sure that the player listens to a specific bit of information. In this recipe,
we will learn how to emphasize a piece of dialog by ducking the audio whenever a specific
sound message is played. For that effect, we will use the new Audio Mixer to send
information between tracks.

Getting ready
For this recipe, we have provided the soundtrack.mp3 audio clip and a Unity package
named Ducking.unitypackage, containing an initial scene. All these files are available
inside the 1362_09_07 folder.

How to do it...
To apply Audio Ducking to your soundtrack, follow these steps:

1. Import Ducking.unitypackage and soundtrack.mp3 into your project.

2. Open the Ducking scene (available in the Assets | Ducking folder). Play the scene
and walk towards the semitransparent green wall in the tunnel, using the W A S D
keys (by pressing Shift to run). You will hear the robotDucking audio clip play as the
character collides with the wall.

3. From the Create drop-down at the top of the Hierarchy view, choose Create Empty
to add a new GameObject to the scene. Name it Soundtrack.

Playing and Manipulating Sounds

384

4. Drag the soundtrack audio clip you have imported into the Soundtrack GameObject.
Then, select the Soundtrack object and from the Inspector view, Audio Source
component, check the Loop option. Make sure the Play On Awake option is checked
and Spatial Blend set to 2D, as shown in the following in the following screenshot:

5. Test the scene again. The soundtrack music should be playing.

6. From the Project view, use the Create drop-down menu to add an Audio Mixer to the
project. Name it MainMixer. Double-click on it to open the Audio Mixer window.

7. From the Groups view, highlight Master and click the + sign to add a child to the
Master group. Name it Music. Then, highlight Master again and add a new child group
named FX, as shown in the following screenshot. Finally, add a third child to the Master
group, named Input:

Chapter 9

385

8. From the Mixers view, highlight MainMixer and click the + sign to add a new Mixer
to the project. Name it MusicMixer. Then, drag it into the MainMixer and select the
group Music as its Output. Repeat the operation to add a mixer named FxMixer to
the project, selecting the FX group as the output:

9. Now, select MusicMixer. Select its Master group and add a child named Soundtrack.
Then, select FxMixer and add a child named Bells, as shown:

10. From the Hierarchy view, select the DialogueTrigger object. Then, in the Inspector
view, Audio Source component, Change its Output track to MainMixer | Input:

Playing and Manipulating Sounds

386

11. Now, select the Soundtrack GameObject and in the Inspector view, in the Audio
Source component, change its Output track to MusicMixer | Soundtrack:

12. Finally, from the Assets folder in the Project view, select the Signal prefab. From the
Inspector view, access its the Audio Source component and change its Output to
FxMixer | Bells:

Chapter 9

387

13. Open the Audio Mixer window. Choose MainMixer, select the Music track controller,
right-click on Attenuation, and using the context menu, add the Duck Volume effect
before Attenuation:

14. Now, select the Input track, right-click on Attenuation, and using the context menu,
add Send after Attenuation:

Playing and Manipulating Sounds

388

15. With Input track still selected, go to the Inspector view and change the Receive
setting in Send to Music\Duck Volume and its Send level to 0.00 db, as shown:

16. Select the Music track. From the Inspector view, change the settings on the Duck
Volume as follows: Threshold: -40.00 db; Ratio: 300.00 %; Attack Time: 100.00
ms; Release Time: 2000.00 ms, as shown in the following screenshot:

17. Test the scene again. Entering the trigger object will cause the soundtrack volume to
drop considerably, recovering the original volume in 2 seconds.

Chapter 9

389

How it works...
In this recipe, we have created, in addition to Music and Sound FX, a group named Input, to
which we have routed the audio clip that triggers the Duck Volume effect attached to our music
track. The Duck Volume effect changes the track's volume whenever it receives an input that is
louder than indicated in its Threshold setting. In our case, we have sent the Input track as input,
and adjusted the settings so the volume will be reduced as soon as 0.1 seconds after the input
had been received, turning back to its original value of 2 seconds after the input has ceased.
The amount of volume reduction was determined by our Ratio of 300.00 %. Playing around with
the setting values will give you a better idea on how each parameter affects the final result. Also,
make sure to visualize the graphic as the trigger sound is played. You will be able to see how the
Input sound passes the threshold, triggering the effect.

Duck Volume

Also, please note that we have organized our tracks so that the other sound clips (other than
speech) will not affect the volume of the music—but every music clip will be affected by audio
clips sent to the input track.

See also
 f The Adding volume control with Audio Mixers recipe in this chapter

 f The Making a dynamic soundtrack with Snapshots recipe in this chapter

391

10
Working with External

Resource Files
and Devices

In this chapter, we will cover:

 f Loading external resource files – using Unity Default Resources

 f Loading external resource files – by downloading files from the Internet

 f Loading external resource files – by manually storing files in the Unity
Resources folder

 f Saving and loading player data – using static properties

 f Saving and loading player data – using PlayerPrefs

 f Saving screenshots from the game

 f Setting up a leaderboard using PHP/MySQL

 f Loading game data from a text file map

 f Managing Unity project code using Git version control and GitHub hosting

 f Publishing for multiple devices via Unity Cloud

Working with the External Resource Files and Devices

392

Introduction
For some projects, it works fine to use the Inspector window to manually assign imported
assets to the component slots, and then build and play the game with no further changes.
However, there are also many times when external data of some kind can add flexibility and
features to a game. For example, it might add updateable or user-editable content; it can
allow memory of user preferences and achievements between scenes, and even game-playing
sessions. Using code to read local or Internet file contents at runtime can help file organization
and separation of tasks between game programmers and the content designers. Having an
arsenal of different assets and long-term game memory techniques means providing a wide
range of opportunities to deliver a rich experience to players and developers alike.

The big picture
Before getting on with the recipes, let's step back and have a quick review of the role of the
asset files and the Unity game building and running process. The most straightforward way
to work with assets is to import them into a Unity project, use the Inspector window to assign
the assets to the components in the Inspector, and then build and play the game.

Standalone executables offer another possible workflow, which is the adding of files into the
Resources folder of the game after it has been built. This will support game media asset
developers being able to provide the final version of assets after development and building
has been completed.

Chapter 10

393

However, another option is to use the WWW class to dynamically read assets from the web at
runtime; or perhaps, for communication with a high score or multiplayer server, and sending
and receiving information and files.

When loading/saving data either locally or via the web interface, it is important to keep in
mind the data types that can be used. When writing C# code, our variables can be of any type
permitted by the language, but when communicated by the web interface, or to a local storage
using Unity's PlayerPrefs class, we are restricted in the types of data that we can work
with. Unity's WWW class permits three file types (text files, binary audio clips, and binary image
textures), but, for example, for 2D UIs we sometimes need Sprite images and not Textures,
so that we have provided in this chapter a C# method to create a Sprite from a Texture. When
using the PlayerPrefs class, we are limited to saving and loading integers, floats, and
strings. Similarly, when communicating with a web server using the URL encoded data, we
are restricted to whatever we can place into strings (we include a PHP web-based high score
recipe, where the user scores can be loaded and saved via such a method).

Finally, managing Unity project source code with an online Distributed Version Control
System (DVCS) like Git and GitHub opens up new workflows for the continuous integration
of code updates to the working builds. Unity Cloud will pull the updated source code projects
from your online repository, and then build the game for designated versions of Unity and the
deployment devices. Developers will get e-mails to confirm the build success, or to list the
reasons for any build failure. The final two recipes in this chapter show you how to manage
your code with Git and GitHub, and use Unity Cloud to build projects for multiple devices.

Working with the External Resource Files and Devices

394

Acknowledgement: Thanks to the following for publishing Creative Commons
(BY 3.0) licensed icons: Elegant Themes, Picol, Freepik, Yannick, Google,
www.flaticon.com.

Loading external resource files – using
Unity Default Resources

In this recipe, we will load an external image file, and display it on the screen, using the Unity
Default Resources file (a library created at the time the game was compiled).

This method is perhaps the simplest way to store and read the external
resource files. However, it is only appropriate when the contents of the
resource files will not change after compilation, since the contents of these
files are combined and compiled into the resources.assets file.
The resources.assets file can be found in the Data folder for a
compiled game.

Getting ready
In the 1362_10_01 folder, we have provided an image file, a text file, and an audio file in the
.ogg format for this recipe:

 f externalTexture.jpg

 f cities.txt

 f soundtrack.ogg

www.flaticon.com

Chapter 10

395

How to do it...
To load the external resources by Unity Default Resources, do the following:

1. Create a new 3D Unity project.

2. In the Project window, create a new folder and rename it Resources.

3. Import the externalTexture.jpg file and place it in the Resources folder.

4. Create a 3D cube.

5. Add the following C# Script to your cube:
using UnityEngine;
using System.Collections;

public class ReadDefaultResources : MonoBehaviour {
 public string fileName = "externalTexture";
 private Texture2D externalImage;

 void Start () {
 externalImage = (Texture2D)Resources.Load(fileName);
 Renderer myRenderer = GetComponent<Renderer>();
 myRenderer.material.SetTexture("_MainTex", externalImage);
 }
}

6. Play the scene. The texture will be loaded and displayed on the screen.

7. If you have another image file, put a copy into the Resources folder. Then, in the
Inspector window, change the public file name to the name of your image file and
play the scene again. The new image will now be displayed.

How it works...
The Resources.Load(fileName) statement makes Unity look inside its compiled project
data file called resources.assets for the contents of a file named externalTexture.
The contents are returned as a texture image, which is stored into the externalImage
variable. The last statement in the Start() method sets the texture of the GameObject
the script has been attached to our externalImage variable.

Note: The filename string passed to Resources.Load() does not include
the file extension (such as .jpg or .txt).

Working with the External Resource Files and Devices

396

There's more...
There are some details that you don't want to miss.

Loading text files with this method
You can load the external text files using the same approach. The private variable needs to be
a string (to store the text file contents). The Start() method uses a temporary TextAsset
object to receive the text file contents, and the text property of this object contains the string
contents that are to be stored in the private variable textFileContents:

public class ReadDefaultResourcesText : MonoBehaviour {
 public string fileName = "textFileName";
 private string textFileContents;

 void Start () {
 TextAsset textAsset = (TextAsset)Resources.Load(fileName);
 textFileContents = textAsset.text;
 Debug.Log(textFileContents);
 }
}

Finally, this string is displayed on the console.

Loading and playing audio files with this method
You can load external audio files using the same approach. The private variable needs to be
an AudioClip:

using UnityEngine;
using System.Collections;

[RequireComponent (typeof (AudioSource))]
public class ReadDefaultResourcesAudio : MonoBehaviour {
 public string fileName = "soundtrack";
 private AudioClip audioFile;

Chapter 10

397

 void Start (){
 AudioSource audioSource = GetComponent<AudioSource>();
 audioSource.clip = (AudioClip)Resources.Load(fileName);
 if(!audioSource.isPlaying && audioSource.clip.isReadyToPlay)
 audioSource.Play();
 }
}

See also
Refer to the following recipes in this chapter for more information:

 f Loading external resource files – by manually storing files in Unity Resources folder

 f Loading external resource files – by downloading files from the Internet

Loading external resource files – by
downloading files from the Internet

One way to store and read a text file data is to store the text files on the Web. In this recipe,
the contents of a text file for a given URL are downloaded, read, and then displayed.

Getting ready
For this recipe, you need to have access to the files on a web server. If you run a local web
server such as Apache, or have your own web hosting, then you can use the files in the
1362_10_01 folder and the corresponding URL.

Otherwise, you may find the following URLs useful; since they are the web locations of an
image file (a Packt Publishing logo) and a text file (an ASCII-art badger picture):

 f www.packtpub.com/sites/default/files/packt_logo.png

 f www.ascii-art.de/ascii/ab/badger.txt

How to do it...
To load external resources by downloading them from the Internet, do the following:

1. In a 2D project, create a new RawImage UI GameObject.

2. Add the following C# script class as a component of your image object:
using UnityEngine;
using UnityEngine.UI;
using System.Collections;

www.packtpub.com/sites/default/files/packt_logo.png
www.ascii-art.de/ascii/ab/badger.txt

Working with the External Resource Files and Devices

398

public class ReadImageFromWeb : MonoBehaviour {
 public string url = "http://www.packtpub.com/sites/default/
files/packt_logo.png";

 IEnumerator Start() {
 WWW www = new WWW(url);
 yield return www;
 Texture2D texture = www.texture;
 GetComponent<RawImage>().texture = texture;
 }
}

3. Play the scene. Once downloaded, the contents of the image file will be displayed:

How it works...
Note the need to use the UnityEngine.UI package for this recipe.

When the game starts, our Start() method starts the coroutine method called LoadWWW().
A coroutine is a method that can keep on running in the background without halting or
slowing down the other parts of the game and the frame rate. The yield statement indicates
that once a value can be returned for imageFile, the remainder of the method can be
executed—that is, until the file has finished downloading, no attempt should be made
to extract the texture property of the WWW object variable.

Once the image data has been loaded, execution will progress past the yield statement.
Finally, the texture property of the RawImage GameObject, to which the script is attached,
is changed to the image data that is downloaded from the Web (inside the texture variable
of the www object).

Chapter 10

399

There's more...
There are some details that you don't want to miss.

Converting from Texture to Sprite
While in the recipe we used a UI RawImage, and so could use the downloaded Texture
directly, there may be times when we wish to work with a Sprite rather than a Texture.
Use this method to create a Sprite object from a Texture:

 private Sprite TextureToSprite(Texture2D texture){
 Rect rect = new Rect(0, 0, texture.width, texture.height);
 Vector2 pivot = new Vector2(0.5f, 0.5f);
 Sprite sprite = Sprite.Create(texture, rect, pivot);
 return sprite;
 }

Downloading a text file from the Web
Use this technique to download a text file:

using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class ReadTextFromWeb : MonoBehaviour {
 public string url = "http://www.ascii-art.de/ascii/ab/badger.txt";

 IEnumerator Start(){
 Text textUI = GetComponent<Text>();
 textUI.text = "(loading file ...)";

 WWW www = new WWW(url);
 yield return www;
 string textFileContents = www.text;
 Debug.Log(textFileContents);

 textUI.text = textFileContents;
 }
}

Working with the External Resource Files and Devices

400

The WWW class and the resource contents
The WWW class defines several different properties and methods to allow the downloaded
media resource file data to be extracted into appropriate variables for use in the game.
The most useful of these include:

 f .text: A read-only property, returning the web data as string

 f .texture: A read-only property, returning the web data as a Texture2D image

 f .GetAudioClip(): A method that returns the web data as an AudioClip

For more information about the Unity WWW class visit http://docs.
unity3d.com/ScriptReference/WWW.html.

See also
Refer to the following recipes in this chapter for more information:

 f Loading external resource files – by Unity Default Resources

 f Loading external resource files – by manually storing files in the Unity
Resources folder

Loading external resource files – by
manually storing files in the Unity
Resources folder

At times, the contents of the external resource files may need to be changed after the game
compilation. Hosting the resource files on the web may not be an option. There is a method of
manually storing and reading files from the Resources folder of the compiled game, which
allows for those files to be changed after the game compilation.

This technique only works when you compile to a Windows or Mac stand
alone executable—it will not work for Web Player builds, for example.

Getting ready
The 1362_10_01 folder provides the texture image that you can use for this recipe:

 f externalTexture.jpg

http://docs.unity3d.com/ScriptReference/WWW.html
http://docs.unity3d.com/ScriptReference/WWW.html

Chapter 10

401

How to do it...
To load external resources by manually storing the files in the Resources folder, do the
following:

1. In a 2D project, create a new Image UI GameObject.

2. Add the following C# script class as a component of your Image object:
using UnityEngine;
using System.Collections;

using UnityEngine.UI;
using System.IO;

public class ReadManualResourceImageFile : MonoBehaviour {
 private string fileName = "externalTexture.jpg";
 private string url;
 private Texture2D externalImage;

 IEnumerator Start () {
 url = "file:" + Application.dataPath;
 url = Path.Combine(url, "Resources");
 url = Path.Combine(url, fileName);

 WWW www = new WWW (url);
 yield return www;

 Texture2D texture = www.texture;
 GetComponent<Image>().sprite = TextureToSprite(texture);
 }

 private Sprite TextureToSprite(Texture2D texture){
 Rect rect = new Rect(0, 0, texture.width, texture.height);
 Vector2 pivot = new Vector2(0.5f, 0.5f);
 Sprite sprite = Sprite.Create(texture, rect, pivot);
 return sprite;
 }
}

3. Build your (Windows or Mac) standalone executable.

Working with the External Resource Files and Devices

402

4. Copy the externalTexture.jpg image to your standalone's Resources folder.

You will need to place the files in the Resources folder manually after every
compilation.

When you create a Windows or Linux standalone executable, there is also
a _Data folder, created with the executable application file. The Resources
folder can be found inside this Data folder.

A Mac standalone application executable looks like a single file, but it
is actually a MacOS package folder. Right-click on the executable file
and select Show Package Contents. You will then find the standalone's
Resources folder inside the Contents folder.

5. Run your standalone game application and the image will be displayed:

How it works...
Note the need to use the System.IO and UnityEngine.UI packages for this recipe.

When the executable runs, the WWW object spots that the URL starts with the word file, and
so Unity attempts to find the external resource file in its Resources folder, and then load
its contents.

There's more...
There are some details that you don't want to miss.

Avoiding cross-platform problems with Path.Combine() rather
than "/" or "\"
The filepath folder separator character is different for Windows and Mac file systems
(backslash (\) for Windows, forward slash (/) for the Mac). However, Unity knows which kind
of standalone you are compiling your project into, therefore the Path.Combine() method
will insert the appropriate separator slash character form the file URL that is required.

Chapter 10

403

See also
Refer to the following recipes in this chapter for more information:

 f Loading external resource files – by Unity Default Resources

 f Loading external resource files – by downloading files from the Internet

Saving and loading player data – using
static properties

Keeping track of the player's progress and user settings during a game is vital to give your
game a greater feel of depth and content. In this recipe, we will learn how to make our game
remember the player's score between the different levels (scenes).

Getting ready
We have included a complete project in a Unity package named game_HigherOrLower
in the 1362_10_04 folder. In order to follow this recipe, we will import this package as the
starting point.

How to do it...
To save and load player data, follow these steps:

1. Create a new 2D project and import the game_HigherOrLower package.

2. Add each of the scenes to the build in the sequence (scene0_mainMenu, then
scene1_gamePlaying, and so on).

3. Make yourself familiar with the game by playing it a few times and examining the
contents of the scenes. The game starts on the scene0_mainMenu scene, inside
the Scenes folder.

4. Let's create a class to store the number of correct and incorrect guesses made by
the user. Create a new C# script called Player with the following code:
using UnityEngine;

public class Player : MonoBehaviour {
 public static int scoreCorrect = 0;
 public static int scoreIncorrect = 0;
}

Working with the External Resource Files and Devices

404

5. In the lower-left corner of the scene0_mainMenu scene, create a UI Text
GameObject named Text – score, containing the placeholder text Score: 99 / 99.

6. Next, attach the following C# script to UI GameObject Text – score:
using UnityEngine;
using System.Collections;

using UnityEngine.UI;

public class UpdateScoreText : MonoBehaviour {
 void Start(){
 Text scoreText = GetComponent<Text>();
 int totalAttempts = Player.scoreCorrect + Player.
scoreIncorrect;
 string scoreMessage = "Score = ";
 scoreMessage += Player.scoreCorrect + " / " + totalAttempts;

 scoreText.text = scoreMessage;
 }
}

7. In the scene2_gameWon scene, attach the following C# script to the Main Camera:
using UnityEngine;

public class IncrementCorrectScore : MonoBehaviour {
 void Start () {
 Player.scoreCorrect++;
 }
}

Chapter 10

405

8. In the scene3_gameLost scene, attach the following C# script to the Main Camera:
using UnityEngine;

public class IncrementIncorrectScore : MonoBehaviour {
 void Start () {
 Player.scoreIncorrect++;
 }
}

9. Save your scripts and play the game. As you progress from level (scene) to level,
you will find that the score and player's name are remembered, until you quit
the application.

How it works...
The Player class uses static (class) properties scoreCorrect and scoreIncorrect to
store the current total number of correct and incorrect guesses. Since these are public static
properties, any object from any scene can access (set or get) these values, since the static
properties are remembered from scene to scene. This class also provides the public static
method called ZeroTotals() that resets both the values to zero.

When the scene0_mainMenu scene is loaded, all the GameObjects with scripts will have
their Start() methods executed. The UI Text GameObject called Text – score has an
instance of the UpdateScoreText class as s script component, so that the scripts Start()
method will be executed, which retrieves the correct and incorrect totals from the Player
class, creates the scoreMessage string about the current score, and updates the text
property so that the user sees the current score.

When the game is running and the user guesses correctly (higher), then the scene2_
gameWon scene is loaded. So the Start() method, of the IncrementCorrectScore
script component, of the Main Camera in this scene is executed, which adds 1 to the
scoreCorrect variable of the Player class.

When the game is running and the user guesses wrongly (lower), then scene scene3_
gameLost is loaded. So the Start() method, of the IncrementIncorrectScore
script component, of the Main Camera in this scene is executed, which adds 1 to the
scoreIncorrect variable of the Player class.

The next time the user visits the main menu scene, the new values of the correct and
incorrect totals will be read from the Player class, and the UI Text on the screen will
inform the user of their updated total score for the game.

Working with the External Resource Files and Devices

406

There's more...
There are some details that you don't want to miss.

Hiding the score before the first attempt completed
Showing a score of zero out of zero isn't very professional. Let's add some logic so that
the score is only displayed (a non-empty string) if the total number of attempts is greater
than zero:

void Start(){
 Text scoreText = GetComponent<Text>();
 int totalAttempts = Player.scoreCorrect + Player.scoreIncorrect;

 // default is empty string
 string scoreMessage = "";
 if(totalAttempts > 0){
 scoreMessage = "Score = ";
 scoreMessage += Player.scoreCorrect + " / " + totalAttempts;
 }

 scoreText.text = scoreMessage;
}

See also
Refer to the following recipe in this chapter for more information:

 f Saving and loading player data – using PlayerPrefs

Saving and loading player data – using
PlayerPrefs

While the previous recipe illustrates how the static properties allow a game to remember
values between different scenes, these values are forgotten once the game application has
quit. Unity provides the PlayerPrefs feature to allow a game to store and retrieve data,
between the different game playing sessions.

Chapter 10

407

Getting ready
This recipe builds upon the previous recipe. In case you haven't completed the previous recipe,
we have included a Unity package named game_scoreStaticVariables in the the
1362_10_05 folder. In order to follow this recipe using this package, you must do the following:

1. Create a new 2D project and import the game_HigherOrLower package.

2. Add each of the scenes to the build in the sequence (scene0_mainMenu, then
scene1_gamePlaying, and so on).

How to do it...
To save and load the player data using PlayerPrefs, follow these steps:

1. Delete the C# script called Player.

2. Edit the C# script called UpdateScoreText by replacing the Start() method
with the following:
void Start(){
 Text scoreText = GetComponent<Text>();

 int scoreCorrect = PlayerPrefs.GetInt("scoreCorrect");
 int scoreIncorrect = PlayerPrefs.GetInt("scoreIncorrect");

 int totalAttempts = scoreCorrect + scoreIncorrect;
 string scoreMessage = "Score = ";
 scoreMessage += scoreCorrect + " / " + totalAttempts;

 scoreText.text = scoreMessage;
}

Working with the External Resource Files and Devices

408

3. Now, edit the C# script called IncrementCorrectScore by replacing the Start()
method with the following code:
void Start () {
 int newScoreCorrect = 1 + PlayerPrefs.GetInt("scoreCorrect");
 PlayerPrefs.SetInt("scoreCorrect", newScoreCorrect);
}

4. Now, edit the C# script called IncrementIncorrectScore by replacing the
Start() method with the following code:
void Start () {
 int newScoreIncorrect = 1 + PlayerPrefs.
GetInt("scoreIncorrect");
 PlayerPrefs.SetInt("scoreIncorrect", newScoreIncorrect);
}

5. Save your scripts and play the game. Quit from Unity and then restart the application.
You will find that the player's name, level, and score are now kept between the
game sessions.

How it works...
We had no need for the Player class, since this recipe uses the built-in runtime class called
PlayerPrefs, provided by Unity.

Unity's PlayerPrefs runtime class is capable of storing and accessing information (the
string, int, and float variables) in the user's machine. Values are stored in a plist file (Mac)
or the registry (Windows), in a similar way to web browser cookies, and therefore, remembered
between game application sessions.

Values for the total correct and incorrect scores are stored by the Start() methods
in the IncrementCorrectScore and IncrementIncorrectScore classes. These
methods use the PlayerPrefs.GetInt("<variableName>") method to retrieve
the old total, add 1 to it, and then store the incremented total using the PlayerPrefs.
SetInt("<variableName>") method.

These correct and incorrect totals are then read each time the scene0_mainMenu scene is
loaded, and the score totals displayed via the UI Text object on the screen.

For more information on PlayerPrefs, see Unity's online documentation at
http://docs.unity3d.com/ScriptReference/PlayerPrefs.
html.

http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html

Chapter 10

409

See also
Refer to the following recipe in this chapter for more information:

 f Saving and loading player data – using static properties

Saving screenshots from the game
In this recipe, we will learn how to take in-game snapshots, and save them in an external file.
Better yet, we will make it possible to choose between three different methods.

This technique only works when you compile to a Windows or Mac standalone
executable—it will not work for Web Player builds, for example.

Getting ready
In order to follow this recipe, please import the screenshots package, which is available in
the 1362_10_06 folder, to your project. The package includes a basic terrain, and a camera
that can be rotated via mouse.

How to do it...
To save the screenshots from your game, follow these steps:

1. Import the screenshots package and open the screenshotLevel scene.

2. Add the following C# Script to the Main Camera:
using UnityEngine;
using System.Collections;
using System;
using System.IO;

public class TakeScreenshot : MonoBehaviour {
 public string prefix = "Screenshot";
 public enum method{captureScreenshotPng, ReadPixelsPng,
ReadPixelsJpg};
 public method captMethod = method.captureScreenshotPng;
 public int captureScreenshotScale = 1;
 [Range(0, 100)]
 public int jpgQuality = 75;
 private Texture2D texture;
 private int sw;

Working with the External Resource Files and Devices

410

 private int sh;
 private Rect sRect;
 string date;

 void Start(){
 sw = Screen.width;
 sh = Screen.height;
 sRect = new Rect(0,0,sw,sh);
 }

 void Update (){
 if (Input.GetKeyDown (KeyCode.P)){
 TakeShot();
 }
 }

 private void TakeShot(){
 date = System.DateTime.Now.ToString("_d-MMM-yyyy-HH-mm-ss-f");

 if (captMethod == method.captureScreenshotPng){
 Application.CaptureScreenshot(prefix + date + ".png",
captureScreenshotScale);
 } else {
 StartCoroutine(ReadPixels());
 }
 }

 IEnumerator ReadPixels (){
 yield return new WaitForEndOfFrame();

 byte[] bytes;
 texture = new Texture2D (sw,sh,TextureFormat.RGB24,false);
 texture.ReadPixels(sRect,0,0);
 texture.Apply();

 if (captMethod == method.ReadPixelsJpg){
 bytes = texture.EncodeToJPG(jpgQuality);
 WriteBytesToFile(bytes, ".jpg");
 } else if (captMethod == method.ReadPixelsPng){
 bytes = texture.EncodeToPNG();
 WriteBytesToFile(bytes, ".png");
 }
 }

Chapter 10

411

 private void WriteBytesToFile(byte[] bytes, string format){
 Destroy (texture);
 File.WriteAllBytes(Application.dataPath + "/../"+prefix + date
+ format, bytes);
 }
}

3. Save your script and attach it to the Main Camera GameObject, by dragging it from
the Project view to the Main Camera GameObject, in the Hierarchy view.

4. Access the Take Screenshot component. Set Capt Method as Capture Screenshot
Png. Change Capture Screenshot Scale to 2.

If you want your image file's name to start with something different
than Screenshot, then change it in the Prefix field.

5. Play the scene. A new screenshot with twice the original size will be saved in your
project folder every time you press P.

How it works...
The Start() method creates a Rect object with the screen width and height. Each frame the
Update() methods tests whether the P key has been pressed.

Once the script has detected that the P key was pressed, the screen is captured and stored as
an image file into the same folder where the executable is. In case the Capture Screenshot Png
option is selected, the script will call a built-in Unity function called CaptureScreenshot(),
which is capable of scaling up the original screen size (in our case, based on the Scale variable
of our script). If not, the image will be captured by the ReadPixels function, encoded to PNG or
JPG and finally, written via the WriteAllBytes function.

In all cases the file created will have the appropriate ".png" or ".jpg" file extension, to match its
image file format.

Working with the External Resource Files and Devices

412

There's more...
We have included the options using the ReadPixel function as a demonstration of how
to save your images to a disk without using Unity's CaptureScreenshot() function. One
advantage of this method is that it can be adapted to capture and save only a portion of the
screen. The captureScreenshotScale variable from our script will not affect screenshots
created with the ReadPixel function though.

Setting up a leaderboard using PHP/MySQL
Games are more fun when there is a leaderboard of high scores that the players have
achieved. Even single player games can communicate to a shared web-based leaderboard.
This recipe includes both, the client side (Unity) code, as well as the web-server side (PHP)
scripts to set and get the player scores from a MySQL database.

Getting ready
This recipe assumes that you either have your own web hosting, or are running a local web
server and a database server, such as XAMPP or MAMP. Your web server needs to support
PHP, and you also need to be able to create the MySQL databases.

All the SQL, PHP, and C# scripts for this recipe can be found in the 1362_10_07 folder.

Chapter 10

413

Since the scene contains several UI elements and the code of the recipe is the
communication with the PHP scripts and SQL database, in 1362_10_07 folder, we have
provided a Unity package called PHPMySQLeaderboard, containing a scene with everything
set up for the Unity project.

If you are hosting your leaderboard on a public website, you will change the
names of the database, database user and password for reasons of security.
You should also implement some form of secret game code, as described in
the There's more… section.

How to do it...
To set up a leaderboard using PHP and MySQL, do the following:

1. On your server, create a new MySQL database named cookbook_highscores.

2. On your server, create a new database user (username=cookbook,
password=cookbook) with full rights to the database that you just created.

3. On your server, execute the following SQL to create the database table called
score_list:
CREATE TABLE `score_list` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `player` varchar(25) NOT NULL,
 `score` int(11) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1;

4. Copy the provided PHP script files to your web server:

1. index.php

2. scoreFunctions.php

3. htmlMenu.php

5. Create a new 2D Unity project and extract the Unity package called
PHPMySQLeaderboard.

6. Run the provided scene, and click on the buttons to make Unity communicate with
the PHP scripts that have access to the high score database.

Working with the External Resource Files and Devices

414

How it works...
The player's scores are stored in a MySQL database. Access to the database is facilitated
through the PHP scripts provided. In our example, all the PHP scripts were placed in the
web server root folder for a local Apache webserver. So, the scripts are accessed via
http://localhost:8888/. However, since URL is a public string variable, this can
be set before running to the location of your server and site code.

All the access is through the PHP file called index.php. There are five actions implemented,
and each is indicated by adding the action name at the end of the URL (this is the GET HTTP
method, which is sometimes used for web forms. Take a look at the address bar of your
browser next time you search Google for example). The actions and their parameters (if any)
are as follows:

 f action = html: This action asks for HTML text listing all player scores to be
returned. This action takes no parameters. It returns: HTML text.

 f action = xml: This action asks for XML text listing all player scores to be returned.
This action takes no parameters. It returns: XML text.

 f action = reset: This action asks for a set of default player name and score values
to replace the current contents of the database table. This action takes no argument.
It returns: the string reset.

 f action = get: This action asks for the integer score of the named player that
is to be found. It takes parameters in the form player = matt. It returns: the
score integer.

 f action = set: This action asks for the provide score of the named player to be
stored in the database (but only if this new score is greater than the currently stored
score). It takes parameters in the form player = matt, score = 101. It returns:
the score integer (if the database update was successful), otherwise a negative value
(to indicate that no update took place).

There are five buttons in the Unity scene (corresponding to the five actions) which set up the
corresponding action and the parameters to be added to the URL, for the next call to the web
server, via the LoadWWW() method. The OnClick actions have been set up for each button
to call the corresponding methods of the WebLeaderBoard C# script of the Main Camera.

There are also three UI Text objects. The first displays the most recent URL string sent to the
server. The second displays the integer value that was extracted from the response message
that was received from the server (or a message as "not an integer" if some other data
was received). The third UI Text object is inside a panel, and has been made large enough
to display a full, multi-line, text string, received from the server (which is stored inside the
textFileContents variable).

Chapter 10

415

The three UI Text objects have been assigned to the public variables of the WebLeaderBoard
C# script for the Main Camera. When the scene first starts, the Start() method calls the
UpdateUI() method to update the three text UI elements. When any of the buttons are clicked,
the corresponding method of the WebLeaderBoard method is called, which builds the URL
string with parameters, and then calls the LoadWWW() method. This method sends the request
to the URL, and waits (by virtue of being a coroutine) until a response is received. It then stores
the content, received in the textFileContents variable, and calls the UpdateUI() method.

There's more...
The following sections will fine-tune and customize this recipe for you:

Extracting the full leaderboard data as XML for display within Unity
The XML text that can be retrieved from the PHP web server provides a useful method for
allowing a Unity game to retrieve the full set of the leaderboard data from the database. Then,
the leaderboard can be displayed to the user in the Unity game (perhaps, in some nice 3D
fashion, or through a game-consistent GUI).

Using the secret game codes to secure your leaderboard scripts
The Unity and PHP code that is presented illustrates a simple, unsecured web-based
leaderboard. To prevent players hacking into the board with false scores, it is usual to encode
some form of secret game code (or key) into the communications. Only update requests that
include the correct code will actually cause a change to the database.

The Unity code will combine the secret key (in this example, the string called harrypotter)
with something related to the communication—for example, the same MySQL/PHP leader board
may have different database records for different games that are identified with a game ID:

// Unity Csharp code
string key = "harrypotter"
string gameId = 21;
string gameCode = Utility.Md5Sum(key + gameId);

The server-side PHP code will receive both the encrypted game code, and also the piece
of game data that is used to create that encrypted code (in this example, the game ID
and MD5 hashing function, which is available in both, Unity and in PHP). The secret key
(harrypotter) is used with the game ID to create an encrypted code that can be compared
with the code received from the Unity game (or whatever user agent or browser is attempting
to communicate with the leaderboard server scripts). The database actions will only be
executed if the game code created on the server matches that send along with the request
for a database action.

// PHP – security code
$key = "harrypotter"
$game_id = $_GET['game_id'];

Working with the External Resource Files and Devices

416

$provided_game_code = $_GET['game_code'];
$server_game_code = md5($key.$game_id);

if($server_game_code == $provided_game_code) {
 // codes match - do processing here
}

See also
Refer to the following recipe for more Information:

 f Preventing your game from running on unknown servers in Chapter 11, Improving
Games With Extra Features and Optimization

Loading game data from a text file map
Rather than, for every level of a game, having to create and place every GameObject on the
screen by hand, a better approach can be to create the text files of rows, and columns of
characters, where each character corresponds to the type of GameObject that is to be created in
the corresponding location. In this recipe, we'll use a text file and set of prefab sprites to display
a graphical version of a text-data file for a screen from the classic game called NetHack.

Getting ready
In the 1362_10_08 folder, we have provided the following two files for this recipe:

 f level1.txt (a text file, representing a level)

 f absurd128.png (a 128 x 128 sprite sheet for Nethack).

Chapter 10

417

The level data came from the Nethack Wikipedia page, and the sprite sheet came from
SourceForge:

 f http://en.wikipedia.org/wiki/NetHack

 f http://sourceforge.net/projects/noegnud/files/tilesets_
nethack-3.4.1/absurd%20128x128/

Note that we also included a Unity package with all the prefabs set up, since this can be a
laborious task.

How to do it...
To load game data from a text file map, do the following:

1. Import the text file called level1.txt, and the image file called absurd128.png.

2. Select absurd128.png in the Inspector, and set Texture Type to Sprite (2D/uGUI),
and Sprite Mode to Multiple.

3. Edit this sprite in the Sprite Editor, choosing Type as Grid and Pixel Size as 128 x
128, and apply these settings.

4. In the Project panel, click on the right-facing white triangle to explode the icon, to
show all the sprites in this sprite sheet individually.

http://en.wikipedia.org/wiki/NetHack
http://sourceforge.net/projects/noegnud/files/tilesets_nethack-3.4.1/absurd%20128x128/
http://sourceforge.net/projects/noegnud/files/tilesets_nethack-3.4.1/absurd%20128x128/

Working with the External Resource Files and Devices

418

5. Drag the Sprite called absurd128_175 onto the scene.

6. Create a new Prefab named corpse_175 in the Project panel, and drag onto this
blank prefab Sprite absurd128_175 from the scene. Now, delete the sprite instance
from the scene. You have now created a prefab containing the Sprite 175.

7. Repeat this process for the following sprites (that is, create prefabs for each one):

1. floor_848

2. corridor_849

3. horiz_1034

4. vert_1025

5. door_844

6. potion_675

 � chest_586

 � alter_583

 � stairs_up_994

 � stairs_down_993

 � wizard_287

8. Select the Main Camera in the Inspector, and ensure that it is set to an Orthographic
camera, sized 20, with Clear Flags as Solid Color and Background as Black.

9. Attach the following C# code to the Main Camera as the script class called
LoadMapFromTextfile:
using UnityEngine;
using System.Collections;

using System.Collections.Generic;

public class LoadMapFromTextfile : MonoBehaviour
{
 public TextAsset levelDataTextFile;

 public GameObject floor_848;
 public GameObject corridor_849;
 public GameObject horiz_1034;
 public GameObject vert_1025;
 public GameObject corpse_175;
 public GameObject door_844;
 public GameObject potion_675;
 public GameObject chest_586;
 public GameObject alter_583;
 public GameObject stairs_up_994;

Chapter 10

419

 public GameObject stairs_down_993;
 public GameObject wizard_287;

 public Dictionary<char, GameObject> dictionary = new
Dictionary<char, GameObject>();

 void Awake(){
 char newlineChar = '\n';

 dictionary['.'] = floor_848;
 dictionary['#'] = corridor_849;
 dictionary['('] = chest_586;
 dictionary['!'] = potion_675;
 dictionary['_'] = alter_583;
 dictionary['>'] = stairs_down_993;
 dictionary['<'] = stairs_up_994;
 dictionary['-'] = horiz_1034;
 dictionary['|'] = vert_1025;
 dictionary['+'] = door_844;
 dictionary['%'] = corpse_175;
 dictionary['@'] = wizard_287;

 string[] stringArray = levelDataTextFile.text.
Split(newlineChar);
 BuildMaze(stringArray);
 }

 private void BuildMaze(string[] stringArray){
 int numRows = stringArray.Length;

 float yOffset = (numRows / 2);

 for(int row=0; row < numRows; row++){
 string currentRowString = stringArray[row];
 float y = -1 * (row - yOffset);
 CreateRow(currentRowString, y);
 }
 }

 private void CreateRow(string currentRowString, float y) {
 int numChars = currentRowString.Length;
 float xOffset = (numChars/2);

 for(int charPos = 0; charPos < numChars; charPos++){
 float x = (charPos - xOffset);
 char prefabCharacter = currentRowString[charPos];

Working with the External Resource Files and Devices

420

 if (dictionary.ContainsKey(prefabCharacter)){
 CreatePrefabInstance(dictionary[prefabCharacter], x, y);
 }
 }
 }

 private void CreatePrefabInstance(GameObject objectPrefab, float
x, float y){
 float z = 0;
 Vector3 position = new Vector3(x, y, z);
 Quaternion noRotation = Quaternion.identity;
 Instantiate (objectPrefab, position, noRotation);
 }
}

10. With the Main Camera selected, drag the appropriate prefabs onto the prefabs slots
in the Inspector, for the LoadMapFromTextfile Script component.

11. When you run the scene, you will see that a sprite-based Nethack map will appear,
using your prefabs.

How it works...
The Sprite sheet was automatically sliced up into hundreds of 128 x 128 pixel Sprite squares.
We created the prefab objects from some of these sprites, so that the copies can be created
at runtime when needed.

Chapter 10

421

The text file called level1.txt contains the lines of text characters. Each non-space
character represents where a sprite prefab should be instantiated (column = X, row = Y). A
C# dictionary variable named dictionary is declared and initialized in the Start() method
to associate specific prefab GameObjects with some particular characters in the text file.

The Awake() method splits the string into an array using the newline character as a
separator. So now, we have stringArray with an entry for each row of the text data.
The BuildMase(…) method is called with the stringArray.

The BuildMaze(…) method interrogates the array to find its length (the number of rows of
data for this level), and sets yOffSet to half this value. This is done to allow the placing of
the prefabs half above Y = 0 and half below, so (0,0,0) is the center of the level map. A
for-loop is used to read each row's string from the array. It passes it to the CreateRow(…)
method along with the Y-value corresponding to the current row.

The CreateRow(…) method extracts the length of the string, and sets xOffSet to half this
value. This is done to allow the placing of the prefabs half to the left of X = 0 and half to the
right, so (0,0,0) is the center of the level map. A for-loop is used to read each character
from the current row's string, and (if there is an entry in our dictionary for that character) then
the CreatePrefabIInstance (…) method is called, passing the prefab reference in the
dictionary for that character, and the x and y value.

The CreatePrefabInstance(…) method instantiates the given prefab at a position of
(x, y, z) where z is always zero, and there is no rotation (Quarternion.identity).

Managing Unity project code using Git
version control and GitHub hosting

Distributed Version Control Systems (DVCS) are becoming a bread-and-butter everyday
tool for software developers. An issue with Unity projects can be the many binary files in
each project. There are also many files in a local system's Unity project directory that are
not needed for archiving/sharing, such as OS specific thumbnail files, trash files, and so on.
Finally, some Unity project folders themselves do not need to be archived, such as Temp
and Library.

While Unity provides its own "Asset Server", many small game developers chose not to pay for
this extra feature. Also, Git and Mercurial (the most common DVCSs) are free, and work with
any set of documents that are to be maintained (programs in any programming language, text-
files, and so on). So, it makes sense to learn how to work with a third-party, industry standard
DVCS for the Unity projects. In fact, the documents for this very book were all archived and
version-controlled using a private GitHub repository!

Working with the External Resource Files and Devices

422

In this recipe, we will set up a Unity project for GIT DVCS through a combination of Unity
Application settings and use of the GitHub GUI-client application.

We created a real project this way—a pacman-style game, which you
can explore and download/pull from the public GitHub's URL, available
at https://github.com/dr-matt-smith/matt-mac-man.

Getting ready
This recipe can be used with any Unity project. In the 1362_10_09 folder, we have provided a
Unity package of our matt-mac-man game, if you wish to use that one - in which case create
a new 2D project in Unity, and import this package.

Since this recipe illustrates hosting code on GitHub, you'll need to create a (free) GitHub
account at github.com if you do not already have one.

Before starting this recipe you need to have installed Git and the GitHub client application.

Learn how, and download the client from the following links:

 f http://git-scm.com/book/en/Getting-Started-Installing-Git

 f http://git-scm.com/downloads/guis

How to do it...
To load the external resources by Unity Default Resources, do the following:

1. In the root directory of your Unity project, add the following code into a file named
.gitignore (ensure that the filename starts with the dot):
===============
Unity generated
===============
Temp/
Library/

=====================================
Visual Studio / MonoDevelop generated
=====================================
ExportedObj/
obj/
*.svd
*.userprefs
/*.csproj

https://github.com/dr-matt-smith/matt-mac-man
github.com
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://git-scm.com/downloads/guis

Chapter 10

423

*.pidb
*.suo
/*.sln
*.user
*.unityproj
*.booproj

============
OS generated
============
.DS_Store
.DS_Store?
._*
.Spotlight-V100
.Trashes
ehthumbs.db
Thumbs.db

This special file (.gitignore) tells the version control system which files do
not need to be archived. For example, we don't need to record the Windows or
Mac image thumbnail files (DS_STORE or Thumbs.db).

2. Open Editor Settings in the Inspector by navigating to Edit | Project Settings |
Editor.

3. In the Editor Settings, set the Version Control Mode to Visible Meta Files.

4. In the Editor Settings, set the Asset Serialization Mode to Force Text.

Working with the External Resource Files and Devices

424

5. Save your project so that these new settings are stored. Then, close the
Unity application.

6. Log on to your GitHub account.

7. On your GitHub home page, click on the green New button to start creating
a new repository.

8. Give your new repository a name (we chose matt-mac-man) and check the Initialize
this repository with a README option.

Chapter 10

425

9. Startup your GitHub client application on your computer, and get a list of the
repositories to clone to the local computer by navigating to File | Clone Repository ...
From the list provided, select your new repository (for us, it was matt-mac-man) and
click on the Clone button to this repository.

10. You'll be asked where to store this repository on your local computer (we simply chose
our Desktop). You will now see a folder with the repository name on your computer's
disk, containing a hidden .git folder, and a single file named README.md.

11. Now, copy to this local repository folder the following files and folders from your
Unity project:

1. .gitignore

2. /Assets

3. /Library

4. /ProjectSettings

Working with the External Resource Files and Devices

426

12. In your GitHub client application, you will now see lots of Uncommitted Changes.
Type in a short comment for your first commit (we typed our standard—v0.1 –
first commit), and click on the Commit & Sync to push the contents of this
Unity project folder up to your GitHub account repository.

13. Now, if you visit your GitHub project page, you will see that all these Unity project
files are available for download for people's computers either as a ZIP archive,
or to be cloned using a Git client.

Chapter 10

427

How it works...
The special file called .gitngnore lists all the files and directories that are not
to be archived.

Changing the Unity Editor Settings for Version Control Mode to Meta Files ensures that Unity
stores the required housekeeping data for each asset in its associated meta file. Selecting
Visible rather than Hidden simply avoids any confusion as to whether GIT will record the
meta files or not—GIT will record them whether visible or not. So, by making them visible,
it is obvious to the developers working with the files that they will be included.

Changing the Unity Editor Settings for Asset Serialization Mode to Force Text attempts to
solve some of the difficulties of managing changes with the large binary files. Unity projects
tend to have quite a few binary files, such as the .unity scene files, prefabs, and so on.
There seems to be some debate about the best setting that should be used; we have found
that Force Text works fine and so, we will use this at present. You'll see two commits on
GitHub, since the very first was when we created the new repository, and the second was our
first commit of the repository using the GitHub client, when we added all of our code into the
local repository and pushed (committed) it to the remote server.

There's more...
There are some details that you don't want to miss.

Learn more about Distributed Version Control Systems (DVCS)
The following video link is a short introduction to DVCS:

 f http://youtu.be/1BbK9o5fQD4

Note that the Fogcreek Kiln "harmony" feature now allows seamless work between GIT and
Mercurial with the same Kiln repository:

 f http://blog.fogcreek.com/kiln-harmony-internals-the-basics/

Using Bitbucket and SourceTree
If you prefer to use Bitbucket and SourceTree with your Unity projects, you can find a good
tutorial at the following URL:

 f http://yeticrabgames.blogspot.ie/2014/02/using-git-with-unity-
without-using.html

http://youtu.be/1BbK9o5fQD4
http://blog.fogcreek.com/kiln-harmony-internals-the-basics/
http://yeticrabgames.blogspot.ie/2014/02/using-git-with-unity-without-using.html
http://yeticrabgames.blogspot.ie/2014/02/using-git-with-unity-without-using.html

Working with the External Resource Files and Devices

428

Using the command line rather than Git-client application
While for many, using a GUI client, such as the GitHub application, is a gentler introduction
to using DVCS, at some point, you'll want to learn more and get to grips with working in the
command line.

Since both Git and Mercurial are open source, there are lots of great, free online resources
available. The following are some good sources to get started on:

 f Learn all about Git, download free GUI clients, and even get free online access to
The Pro Git book (by Scott Chacon), available through Creative Commons license at
the following URL:

 � http://git-scm.com/book

 f You will find an online interactive Git command line to practice in:

 � https://try.github.io/levels/1/challenges/1

 f The main Mercurial website, including free online access to the Mercurial:
The Definitive Guide (by Bryan O'Sullivan) book is available through the Open
Publication License at:

 � http://mercurial.selenic.com/

 f SourceTree is a free Mercurial and Git GUI client, available at:

 � http://www.sourcetreeapp.com/

See also
Refer to the following recipe for more information:

 f Publishing for multiple devices via Unity Cloud

Publishing for multiple devices via
Unity Cloud

One reason for the Git recipe in this chapter is to allow you to prepare your projects for one
of the most exciting new services offered to Unity developers in recent years—Unity Cloud!
Unity Cloud takes all the work out of building different versions of your project for different
devices—you PUSH your updated Unity project to your online DVCS (such as GitHub). Then,
Unity Cloud will see the update and PULL your new code, and build your game for the range
of devices/deployment platforms that you have set up.

http://git-scm.com/book
https://try.github.io/levels/1/challenges/1
http://mercurial.selenic.com/
http://www.sourcetreeapp.com/

Chapter 10

429

Getting ready
First, log on to the Unity Cloud Build website and create an account at:

 f http://unity3d.com/unity/cloud-build

For this recipe, you need access to a project's source code. If you don't have your own (for
example, you haven't completed the Git recipe in this chapter), then feel free to use the matt-
mac-man project available at the public GitHub URL at:

 f https://github.com/dr-matt-smith/matt-mac-man

A common reason for a test project that was first built to fail is forgetting
to add at least one scene to the build settings for the project.

How to do it...
To load external resources by Unity Default Resources, do the following:

1. Log on to your Unity Cloud Build account.

2. On the Projects page, click on the Add a New Project button.

3. Next, you'll need to add the URL for your source code, and the Source Control
Method (SCM). For our project, we entered our matt-mac-man URL, and GIT
for the SCM.

http://unity3d.com/unity/cloud-build
https://github.com/dr-matt-smith/matt-mac-man

Working with the External Resource Files and Devices

430

4. Next, you need to enter some settings. Unity Cloud Build will choose your source code
project name as the default application name (most times, this is fine). You need to
enter a Bundle ID—commonly, the reverse of your website URL is used here to ensure
that the App Name plus Bundle ID is unique. So, we entered com.mattsmithdev.
Unless testing branches of the code, the default master branch is fine, and likewise,
unless testing subfolders, the default (no subfolder) is fine. Unless you are using the
latest "beta" versions, the Unity Version option should be left to the default Always
Use Latest Version. Finally, check the build options that you wish to have created.
Note that you'll need to have set up the Apple codes if building for iOS; but you will be
able to build for Unity Web Player and Android immediately.

5. Next are the app "credentials". Unless you have Android credentials, you can choose
the default "development" credentials. But this means that users will be warned when
installing the application.

6. Unity Cloud will then start to build your application—this will take a few minutes
(depending on the load on their server).

7. When built, you'll get an e-mail (for each deployment target—so, we got one for Web
Player, and one for Android). If the build fails, you'll still get an e-mail, and you can
look up the logs for the reasons why the build failed.

Chapter 10

431

8. You can then play web player version immediately:

Working with the External Resource Files and Devices

432

9. To test with Android or iOS, you download it onto the device (from the Unity Cloud web
server) and play the game:

How it works...
Unity Cloud pulls your project source code from the DVCS system (such as GitHub). It then
compiles your code using the settings chosen for Unity version and deployment platforms
(we chose Web Player and Android in this recipe). If the build is successful, Unity Cloud
makes the build applications available to download and run.

There's more...
There are some details that you don't want to miss.

Learn more about Unity Cloud
Learn more in the Support section of the Unity Cloud website (after logging-in), and the Unity
main website Cloud Build information page at:

 f https://build.cloud.unity3d.com/support/

 f http://unity3d.com/unity/cloud-build

See also
 f For more information refer the Managing Unity project code using Git version control

and GitHub hosting recipe

https://build.cloud.unity3d.com/support/
http://unity3d.com/unity/cloud-build

Chapter 11

433

11
Improving Games

with Extra Features
and Optimization

In this chapter, we will cover the following topics:

 f Pausing the game
 f Implementing slow motion
 f Preventing your game from running on unknown servers
 f State-driven behavior Do-It-Yourself states
 f State-driven behavior using the State Design pattern
 f Reducing the number of objects by destroying objects at a death time
 f Reducing the number of enabled objects by disabling objects whenever possible
 f Reducing the number of active objects by making objects inactive whenever possible
 f Improving efficiency with delegates and events and avoiding SendMessage!
 f Executing methods regularly but independent of frame rate with coroutines
 f Spreading long computations over several frames with coroutines
 f Evaluating performance by measuring max and min frame rates (FPS)
 f Identifying performance bottlenecks with the Unity performance Profiler
 f Identifying performance bottlenecks with Do-It-Yourself performance profiling
 f Cache GameObject and component references to avoid expensive lookups
 f Improving performance with LOD groups
 f Improving performance through reduced draw calls by designing for draw call batching

Improving Games with Extra Features and Optimization

434

Introduction
The first three recipes in this chapter provide some ideas for adding some extra features
to your game (pausing, slow motion, and securing online games). The next two recipes
then present ways to manage complexity in your games through managing states and
their transitions.

The rest of the recipes in this chapter provide examples of how to investigate and improve
the efficiency and performance of your game. Each of these optimization recipes begins by
stating an optimization principle that it embodies.

The big picture
Before getting on with the recipes, let's step back and think about the different parts of Unity
games and how their construction and runtime behavior can impact on game performance.

Games are made up of several different kinds of components:

 f Audio assets

 f 2D and 3D graphical assets

 f Text and other file assets

 f Scripts

When a game is running, there are many competing processing requirements for your CPU
and GPU, including:

 f Audio processing

 f Script processing

 f 2D physics processing

 f 3D physics processing

 f Graphical rendering

 f GPU processing

One way to reduce the complexity of graphical computations and to improve frame rates is
to use simpler models whenever possible—this is the reduction of the Level Of Detail (LOD).
The general strategy is to identify situations where a simpler model will not degrade the user's
experience. Typically, situations include where a model is only taking up a small part of the
screen (so less detail in the model will not change what the user sees), when objects are
moving very fast across the screen (so the user is unlikely to have time to notice less detail),
or where we are sure the users' visual focus is elsewhere (for example, in a car racing game,
the user is not looking at the quality of the trees but on the road ahead). We provide a LOD
recipe, Improving performance with LOD groups, in this chapter.

Chapter 11

435

Unity's draw call batching may actually be more efficient than you or your team's 3D modelers
are at reducing the triangle/vertex geometry. So, it may be that by manually simplifying a 3D
model, you have removed Unity's opportunity to apply its highly effective vertex reduction
algorithms; then, the geometric complexity may be larger for a small model than for a larger
model, and so a smaller model may lead to a lower game performance! One recipe presents
advice collected from several sources and the location of tools to assist in different strategies
to try to reduce draw calls and improve graphical performance.

We will present several recipes allowing you to analyze actual processing times and frame
rates, so that you can collect data to confirm whether your design decisions are having the
desired efficiency improvements.

"You have a limited CPU budget and you have to live with it"

 Joachim Ante, Unite-07

At the end of the day, the best balance of heuristic strategies for your particular game project
can only be discovered by an investment of time and hard work, and some form of profiling
investigation. Certain strategies (such as caching to reduce component reflection lookups)
should perhaps be standard practice in all projects, while other strategies may require tweaking
for each unique game and level, to find which approaches work effectively to improve efficiency,
frame rates, and, most importantly, the user experience when playing the game.

"Premature Optimization is the root of all evil"

Donald Knuth, "Structured Programming With Go To Statements". Computing
Surveys, Vol 6, No 4, December 1974

Perhaps, the core strategy to take away from this chapter is that there are many parts
of a game that are candidates for possible optimization, and you should drive the actual
optimizations you finally implement for a particular game based on the evidence you gain
by profiling its performance.

Pausing the game
As compelling as your next game will be, you should always let players pause it for a short
break. In this recipe, we will implement a simple and effective pause screen including
controls for changing the display's quality settings.

Getting ready
For this recipe, we have prepared a package named BallGame containing a playable scene.
The package is in the 1362_11_01 folder.

Improving Games with Extra Features and Optimization

436

How to do it...
To pause your game upon pressing the Esc key, follow these steps:

1. Import the BallGame package into your project and, from the Project view, open the
level named BallGame_01.

2. In the Inspector, create a new tag Ball, apply this tag to prefab ball in Prefabs
folder, and save the scene.

3. From the Hierarchy view, use the Create drop-down menu to add a Panel to the UI
(Create | UI | Panel). Note that it will automatically add it to the current Canvas in
the scene. Rename the panel QualityPanel.

4. Now use the Create drop-down menu to add a Slider to the UI (Create | UI | Slider).
Rename it QualitySlider.

5. Finally, use the Create drop-down menu to add a Text to the UI (Create | UI | Text).
Rename it QualityLabel. Also, from the Inspector view, Rect Transform, change
its Pos Y to -25.

6. Add the following C# script PauseGame to First Person Controller:
using UnityEngine;
using UnityEngine.UI;
using System.Collections;

public class PauseGame : MonoBehaviour {
 public GameObject qPanel;
 public GameObject qSlider;
 public GameObject qLabel;
 public bool expensiveQualitySettings = true;
 private bool isPaused = false;

 void Start () {
 Cursor.visible = isPaused;
 Slider slider = qSlider.GetComponent<Slider> ();
 slider.maxValue = QualitySettings.names.Length;
 slider.value = QualitySettings.GetQualityLevel ();
 qPanel.SetActive(false);
 }

 void Update () {
 if (Input.GetKeyDown(KeyCode.Escape)) {
 isPaused = !isPaused;
 SetPause ();
 }
 }

Chapter 11

437

 private void SetPause(){
 float timeScale = !isPaused ? 1f : 0f;
 Time.timeScale = timeScale;
 Cursor.visible = isPaused;
 GetComponent<MouseLook> ().enabled = !isPaused;
 qPanel.SetActive (isPaused);
 }

 public void SetQuality(float qs){
 int qsi = Mathf.RoundToInt (qs);
 QualitySettings.SetQualityLevel (qsi);
 Text label = qLabel.GetComponent<Text> ();
 label.text = QualitySettings.names [qsi];
 }
}

7. From the Hierarchy view, select the First Person Controller. Then, from the
Inspector, access the Pause Game component and populate the QPanel,
QSlider, and QLabel fields with the game objects QualityPanel, QualitySlider,
and QualityLabel respectively, as shown in the following screenshot:

8. From the Hierarchy view, select QualitySlider. Then, from the Inspector view, Slider
component, find the list named On Value Changed (Single), and click on the + sign
to add a command.

Improving Games with Extra Features and Optimization

438

9. Drag the First Person Controller from the Hierarchy view into the game object field
of the new command. Then, use the function selector to find the SetQuality function
under Dynamic float (No Function | PauseGame | Dynamic float | SetQuality), as
shown in the following screenshot:

10. When you play the scene, you should be able to pause/resume the game by pressing
the Esc key, also activating a slider that controls the game's quality settings.

Chapter 11

439

How it works...
Pausing the game is actually an easy, straightforward task in Unity: all we need to do is set
the game's Time Scale to 0 (and set it back to 1 to resume). In our code, we have included
such a command within the SetPause() function, which is called whenever the player
presses the Esc key, also toggling the isPaused variable. To make things more functional,
we have included a GUI panel featuring a QualitySettings slider that is activated whenever
the game is paused.

Regarding the behavior for the QualitySettings slider and text, their parameters are adjusted
at the start based on the game's variety of quality settings, their names, and its current state.
Then, changes in the slider's value redefine the quality settings, also updating the label text
accordingly.

There's more...
You can always add more functionality to the pause screen by displaying sound volume
controls, save/load buttons, and so on.

Learning more about QualitySettings
Our code for changing quality settings is a slight modification of the example given by Unity's
documentation. If you want to learn more about the subject, check out http://docs.
unity3d.com/ScriptReference/QualitySettings.html.

See also
Refer to the Implementing slow motion recipe in this chapter for more information.

http://docs.unity3d.com/ScriptReference/QualitySettings.html
http://docs.unity3d.com/ScriptReference/QualitySettings.html

Improving Games with Extra Features and Optimization

440

Implementing slow motion
Since Remedy Entertainment's Max Payne, slow motion, or bullet time, became a popular
feature in games. For example, Criterion's Burnout series has successfully explored the
slow motion effect in the racing genre. In this recipe, we will implement a slow motion
effect triggered by the pressing of the mouse's right button.

Getting ready
For this recipe, we will use the same package as the previous recipe, BallGame in the
1362_11_02 folder.

How to do it...
To implement slow motion, follow these steps:

1. Import the BallGame package into your project and, from the Project view, open the
level named BallGame_01.

2. In the Inspector, create a new tag Ball, apply this tag to prefab ball in the Prefabs
folder, and save the scene.

3. Add the following C# script BulletTime to First Person Controller:
using UnityEngine;
using UnityEngine.UI;
using System.Collections;

public class BulletTime : MonoBehaviour
{
 public float sloSpeed = 0.1f;
 public float totalTime = 10f;
 public float recoveryRate = 0.5f;
 public Slider EnergyBar;
 private float elapsed = 0f;
 private bool isSlow = false;

 void Update ()
 {

 if (Input.GetButtonDown ("Fire2")
&& elapsed < totalTime)
 SetSpeed (sloSpeed);

 if (Input.GetButtonUp ("Fire2"))
 SetSpeed (1f);

Chapter 11

441

 if (isSlow) {
 elapsed += Time.deltaTime / sloSpeed;
 if (elapsed >= totalTime) {
 SetSpeed (1f);
 }

 } else {
 elapsed -= Time.deltaTime * recoveryRate;
 elapsed = Mathf.Clamp (elapsed, 0, totalTime);
 }
 float remainingTime =
(totalTime - elapsed) / totalTime;
 EnergyBar.value = remainingTime;
 }

 private void SetSpeed (float speed)
 {
 Time.timeScale = speed;
 Time.fixedDeltaTime = 0.02f * speed;
 isSlow = !(speed >= 1.0f);
 }
}

4. From the Hierarchy view, use the Create drop-down menu to add a Slider to the UI
(Create | UI | Slider). Please note that it will be created as a child of the preexisting
Canvas object. Rename it EnergySlider.

5. Select EnergySlider and, from the Inspector view, Rect Transform component, set its
position as follows: Left: 0; Pos Y: 0; Pos Z: 0; Right: 0; Height: 50. Then, expand the
Anchors settings and change it to: Min X: 0; Y: 1; Max X: 0.5; Y: 1; Pivot X: 0; Y: 1, as
shown in the following screenshot:

Improving Games with Extra Features and Optimization

442

6. Also select the Handle Slide Area child and disable it from the Inspector view, as
shown in the following screenshot:

7. Finally, select the First Person Controller from the Hierarchy view, find the Bullet
Time component, and drag the EnergySlider from the Hierarchy view into its Energy
Bar slot, as shown in the next screenshot:

8. Play your game. You should be able to activate slow motion by holding down the
right mouse button (or whatever alternative you have set for Input axis Fire2). The
slider will act as a progress bar that slowly shrinks, indicating the remaining bullet
time you have.

How it works...
Basically, all we need to do to have the slow motion effect is decrease the Time.
timeScale variable. In our script, we do that by using the sloSpeed variable. Please note
that we also need to adjust the Time.fixedDeltaTime variable, updating the physics
simulation of our game.

Chapter 11

443

In order to make the experience more challenging, we have also implemented a sort of energy
bar to indicate how much bullet time the player has left (the initial value is given, in seconds,
by the totalTime variable). Whenever the player is not using bullet time, he has his quota
filled according to the recoveryRate variable.

Regarding the GUI slider, we have used the Rect Transform settings to place it on the top-
left corner and set its dimensions to half of the screen's width and 50 pixels tall. Also, we
have hidden the handle slide area to make it more similar to a traditional energy bar. Finally,
instead of allowing direct interaction from the player with the slider, we have used the
BulletTime script to change the slider's value.

There's more...
Some suggestions for you to improve your slow motion effect even further are as follows.

Customizing the slider
Don't forget that you can personalize the slider's appearance by creating your own sprites,
or even by changing the slider's fill color based on the slider's value. Try adding the following
lines of code to the end of the Update function:

GameObject fill = GameObject.Find("Fill").gameObject;
Color sliderColor =
Color.Lerp(Color.red, Color.green, remainingTime);
fill.GetComponent<Image> ().color = sliderColor;

Adding Motion Blur
Motion Blur is an image effect frequently identified with slow motion. Once attached to
the camera, it could be enabled or disabled depending on the speed float value. For more
information on the Motion Blur image effect, refer to http://docs.unity3d.com/
Manual/script-MotionBlur.html.

Creating sonic ambience
Max Payne famously used a strong, heavy heartbeat sound as sonic ambience. You could
also try lowering the sound effects volume to convey the character focus when in slow motion.
Plus, using audio filters on the camera could be an interesting option.

See also
Refer to the recipe Pausing the game in this chapter for more information.

http://docs.unity3d.com/Manual/script-MotionBlur.html
http://docs.unity3d.com/Manual/script-MotionBlur.html

Improving Games with Extra Features and Optimization

444

Preventing your game from running on
unknown servers

After all the hard work you've had to go through to complete your web game project, it wouldn't
be fair if it ended up generating traffic and income on someone else's website. In this recipe,
we will create a script that prevents the main game menu from showing up unless it's hosted
by an authorized server.

Getting ready
To test this recipe, you will need access to a webspace provider where you can host the game.

How to do it...
To prevent your web game from being pirated, follow these steps:

1. From the Hierarchy view, use the Create drop-down menu to create a UI Text
GameObject (Create | UI | Text). Name it Text – warning. Then, from the Text
component in the Inspector, change its text field to Getting Info. Please wait.

2. Add the following C# script to the Text – warning game object:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class BlockAccess : MonoBehaviour {
 public bool checkDomain = true;
 public bool fullURL = true;
 public string[] domainList;
 public string warning;

 private void Start(){
 Text scoreText = GetComponent<Text>();
 bool illegalCopy = true;

 if (Application.isEditor)
 illegalCopy = false;

 if (Application.isWebPlayer && checkDomain){
 for (int i = 0; i < domainList.Length; i++){
 if (Application.absoluteURL == domainList[i]){
 illegalCopy = false;

Chapter 11

445

 }else if (Application.absoluteURL.Contains(domainList[i])
&& !fullURL){
 illegalCopy = false;
 }
 }
 }

 if (illegalCopy)
 scoreText.text = warning;
 else
 Application.LoadLevel(Application.loadedLevel + 1);
 }
}

3. From the Inspector view, leave the options Check Domain and Full URL checked,
and increase Size of Domain List to 1 and fill out Element 0 with the complete URL
for your game. Type in the sentence This is not a valid copy of the game
in the Message field, as shown in the following screenshot. You might have to change
the paragraph's Horizontal Overflow to Overflow.

Note: Remember to include the Unity 3D file name and extension
in the URL, and not the HTML where it is embedded.

4. Save your scene as menu.

5. Create a new scene and change its Main Camera background color to black. Save
this scene as nextLevel.

6. Let's build the game. Go to the File | Build Settings… menu and include the scenes
menu and nextLevel, in that order, in the build list (Scenes in Build). Also, select
Web Player as your platform and click on Build.

Improving Games with Extra Features and Optimization

446

How it works...
As soon as the scene starts, the script compares the actual URL of the .unity3d file to
the ones listed in the Block Access component. If they don't match, the next level in the
build is not loaded and a message appears on the screen. If they do match, the line of code
Application.LoadLevel(Application.loadedLevel + 1) will load the next scene
from the build list.

There's more...
Here is some information on how to fine tune and customize this recipe.

Improving security by using full URLs in your domain list
Your game will be more secure if you fill out the domain list with complete URLs (such as
http://www.myDomain.com/unitygame/game.unity3d). In fact, it's recommended
that you leave the Full URL option selected so that your game won't be stolen and published
under a URL such as www.stolenGames.com/yourgame.html?www.myDomain.com.

Allowing redistribution with more domains
If you want your game to run from several different domains, increase Size and fill out more
URLs. Also, you can leave your game completely free of protection by leaving the Check
Domain option unchecked.

State-driven behavior Do-It-Yourself states
Games as a whole, and individual objects or characters, can often be thought of (or modeled
as) passing through different states or modes. Modeling states and changes of state (due to
events or game conditions) is a very common way to manage the complexity of games and
game components. In this recipe, we create a simple three-state game (game playing/game
won/game lost) using a single GameManager class.

How to do it...
To use states to manage object behavior, follow these steps:

1. Create two UI buttons at the top middle of the screen. Name one Button-win and
edit its text to read Win Game. Name the second Button-lose and edit its text to read
Lose Game.

2. Create a UI text object at the top left of the screen. Name this Text-state-messages,
and set its Rect Transform height property to 300 and its Text (Script) Paragraph
Vertical Overflow property to Overflow.

http://www.myDomain.com/unitygame/game.unity3d
www.stolenGames.com/yourgame.html?www.myDomain.com

Chapter 11

447

3. Add the following C# script class GameManager to Main Camera:
using UnityEngine;
using System.Collections;
using System;
using UnityEngine.UI;

public class GameManager : MonoBehaviour {
 public Text textStateMessages;
 public Button buttonWinGame;
 public Button buttonLoseGame;

 private enum GameStateType {
 Other,
 GamePlaying,
 GameWon,
 GameLost,
 }

 private GameStateType currentState = GameStateType.Other;
 private float timeGamePlayingStarted;
 private float timeToPressAButton = 5;

 void Start () {
 NewGameState(GameStateType.GamePlaying);
 }

 private void NewGameState(GameStateType newState) {
 // (1) state EXIT actions
 OnMyStateExit(currentState);

 // (2) change current state
 currentState = newState;

 // (3) state ENTER actions

Improving Games with Extra Features and Optimization

448

 OnMyStateEnter(currentState);

 PostMessageDivider();
 }

 public void PostMessageDivider(){
 string newLine = "\n";
 string divider = "--------------------------------";
 textStateMessages.text += newLine + divider;
 }

 public void PostMessage(string message){
 string newLine = "\n";
 string timeTo2DecimalPlaces =
String.Format("{0:0.00}", Time.time);
 textStateMessages.text += newLine +
timeTo2DecimalPlaces + " :: " + message;
 }

 public void BUTTON_CLICK_ACTION_WIN_GAME(){
 string message = "Win Game BUTTON clicked";
 PostMessage(message);
 NewGameState(GameStateType.GameWon);
 }

 public void BUTTON_CLICK_ACTION_LOSE_GAME(){
 string message = "Lose Game BUTTON clicked";
 PostMessage(message);
 NewGameState(GameStateType.GameLost);
 }

 private void DestroyButtons(){
 Destroy (buttonWinGame.gameObject);
 Destroy (buttonLoseGame.gameObject);
 }

 //--------- OnMyStateEnter[S] - state specific actions
 private void OnMyStateEnter(GameStateType state){
 string enterMessage = "ENTER state: " +
state.ToString();
 PostMessage(enterMessage);

 switch (state){
 case GameStateType.GamePlaying:

Chapter 11

449

 OnMyStateEnterGamePlaying();
 break;
 case GameStateType.GameWon:
 // do nothing
 break;
 case GameStateType.GameLost:
 // do nothing
 break;
 }
 }

 private void OnMyStateEnterGamePlaying(){
 // record time we enter state
 timeGamePlayingStarted = Time.time;
 }

 //--------- OnMyStateExit[S] - state specific actions
 private void OnMyStateExit(GameStateType state){
 string exitMessage = "EXIT state: " + state.ToString();
 PostMessage(exitMessage);

 switch (state){
 case GameStateType.GamePlaying:
 OnMyStateExitGamePlaying();
 break;
 case GameStateType.GameWon:
 // do nothing
 break;
 case GameStateType.GameLost:
 // do nothing
 break;
 case GameStateType.Other:
 // cope with game starting in state 'Other'
 // do nothing
 break;
 }
 }

 private void OnMyStateExitGamePlaying(){
// if leaving gamePlaying state then destroy the 2 buttons
 DestroyButtons();
 }

 //--------- Update[S] - state specific actions

Improving Games with Extra Features and Optimization

450

 void Update () {
 switch (currentState){
 case GameStateType.GamePlaying:
 UpdateStateGamePlaying();
 break;
 case GameStateType.GameWon:
 // do nothing
 break;
 case GameStateType.GameLost:
 // do nothing
 break;
 }
 }

 private void UpdateStateGamePlaying(){
 float timeSinceGamePlayingStarted =
Time.time - timeGamePlayingStarted;
 if(timeSinceGamePlayingStarted > timeToPressAButton){
 string message =
"User waited too long - automatically going to
Game LOST state";
 PostMessage(message);
 NewGameState(GameStateType.GameLost);
 }
 }
}

4. In the Hierarchy, select the Button-win button, and for its Button (Script)
component, add an OnClick action to call the BUTTON_CLICK_ACTION_
WIN_GAME() method from the GameManager component in the Main Camera
GameObject.

5. In the Hierarchy, select the Button-lose button, and for its Button (Script)
component, add an OnClick action to call the BUTTON_CLICK_ACTION_LOSE_
GAME() method from the GameManager component in the Main Camera
GameObject.

6. In the Hierarchy, select the Main Camera GameObject. Next, drag into the Inspector
to ensure that all three GameManager (Script) public variables, Text State
Messages, Button Win Game, and Button Lose Game, have the corresponding
Canvas GameObjects dragged into them (the two buttons and the UI text
GameObject).

Chapter 11

451

How it works...
As can be seen in the following state chart figure, this recipe models a simple game, which
starts in the GAME PLAYING state; then, depending on the button clicked by the user, the
game moves either into the GAME WON state or the GAME LOST state. Also, if the user
waits too long to click on a button, the game moves into the GAME LOST state.

The possible states of the system are defined using the enumerated type GameStateType, and
the current state of the system at any point in time is stored in the currentState variable.

A fourth state is defined (Other) to allow us to explicitly set the desired GamePlaying
state in our Start() method. When we wish the game state to be changed, we call
the NewGameState(…)method, passing the new state the game is to change into. The
NewGameState(…)method first calls the OnMyStateExit(…)method with the current
state, since there may be actions to be performed when a particular state is exited; for
example, when the GamePlaying state is exited, it destroys the two buttons. Next, the
NewGameState(…)method sets the currentState variable to be assigned the new
state. Next, the OnMyStateEnter(…) method is called, since there may be actions to be
performed immediately when a new state is entered. Finally, a message divider is posted
to the UI Text box, with a call to the PostMessageDivider()method.

When the GameManager object receives messages (for example, every frame for
Update()), its behavior must be appropriate for the current state. So, we see in this
method a Switch statement, which calls state-specific methods. For example, if the
current state is GamePlaying, then when an Update() message is received, the
UpdateStateGamePlaying()method will be called.

The BUTTON_CLICK_ACTION_WIN_GAME() and BUTTON_CLICK_ACTION_LOSE_GAME()
methods are executed if their corresponding buttons have been clicked. They move the game
into the corresponding WIN or LOSE state.

Logic has been written in the UpdateStateGamePlaying() method, so once the
GameManager has been in the GamePlaying state for more than a certain time (defined in
variable timeToPressAButton), the game will automatically change into the GameLost state.

Improving Games with Extra Features and Optimization

452

So, for each state, we may need to write methods for state exit, state entry, and update
events, and also a main method for each event with a Switch statement to determine which
state method should be called (or not). As can be imagined, the size of our methods and the
number of methods in our GameManager class will grow significantly as more states and a
more complex game logic are needed for non-trivial games. The next recipe takes a more
sophisticated approach to state-driven games, where each state has its own class.

See also
Refer to the next recipe in this chapter for more information on how to manage the complexity
of states with class inheritance and the State Design Pattern.

State-driven behavior using the State Design
pattern

The previous pattern illustrated not only the usefulness of modeling game states, but also
how a game manager class can grow in size and become unmanageable. To manage the
complexity of many states and complex behaviors of states, the State pattern has been
proposed in the software development community. Design patterns are general purpose
software component architectures that have been tried and tested and found to be good
solutions to commonly occurring software system features. The key features of the State
pattern are that each state is modeled by its own class and that all states inherit (are
subclassed) from a single parent state class. The states need to know about each other in
order to tell the game manager to change the current state. This is a small price to pay for
the division of the complexity of the overall game behaviors into separate state classes.

NOTE: Many thanks to the contribution from Bryan Griffiths which has helped
improve this recipe.

Getting ready
This recipe builds upon the previous recipe. So, make a copy of that project, open it, and then
follow the steps for this recipe.

Chapter 11

453

How to do it...
To manage an object's behavior using the state pattern architecture, perform the following
steps:

1. Replace the contents of C# script class GameManager with the following:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class GameManager : MonoBehaviour {
 public Text textGameStateName;
 public Button buttonWinGame;
 public Button buttonLoseGame;

 public StateGamePlaying stateGamePlaying{get; set;}
 public StateGameWon stateGameWon{get; set;}
 public StateGameLost stateGameLost{get; set;}

 private GameState currentState;

 private void Awake () {
 stateGamePlaying = new StateGamePlaying(this);
 stateGameWon = new StateGameWon(this);
 stateGameLost = new StateGameLost(this);
 }

 private void Start () {
 NewGameState(stateGamePlaying);
 }

 private void Update () {
 if (currentState != null)
 currentState.StateUpdate();
 }

 public void NewGameState(GameState newState)
 {
 if(null != currentState)
 currentState.OnMyStateExit();

 currentState = newState;
 currentState.OnMyStateEntered();
 }

Improving Games with Extra Features and Optimization

454

 public void DisplayStateEnteredMessage(string
stateEnteredMessage){
 textGameStateName.text = stateEnteredMessage;
 }

 public void BUTTON_CLICK_ACTION_WIN_GAME(){
 if(null != currentState){
currentState.OnButtonClick(GameState.ButtonType.ButtonWinGame);
 DestroyButtons();
 }
 }

 public void BUTTON_CLICK_ACTION_LOSE_GAME(){
 if(null != currentState){
currentState.OnButtonClick(GameState.ButtonType.ButtonLoseGame);
 DestroyButtons();
 }
 }

 private void DestroyButtons(){
 Destroy (buttonWinGame.gameObject);
 Destroy (buttonLoseGame.gameObject);
 }
}

2. Create a new C# script class called GameState:
using UnityEngine;
using System.Collections;

public abstract class GameState {
 public enum ButtonType {
 ButtonWinGame,
 ButtonLoseGame
 }

 protected GameManager gameManager;
 public GameState(GameManager manager) {
 gameManager = manager;
 }

 public abstract void OnMyStateEntered();
 public abstract void OnMyStateExit();
 public abstract void StateUpdate();
 public abstract void OnButtonClick(ButtonType button);
}

Chapter 11

455

3. Create a new C# script class called StateGamePlaying:
using UnityEngine;
using System.Collections;

public class StateGamePlaying : GameState {
 public StateGamePlaying(GameManager
manager):base(manager){}

 public override void OnMyStateEntered(){
 string stateEnteredMessage =
"ENTER state: StateGamePlaying";
 gameManager.DisplayStateEnteredMessage(stateEnteredMessage);
 Debug.Log(stateEnteredMessage);
 }
 public override void OnMyStateExit(){}
 public override void StateUpdate() {}

 public override void OnButtonClick(ButtonType button){
 if(ButtonType.ButtonWinGame == button)
 gameManager.NewGameState(gameManager.stateGameWon);

 if(ButtonType.ButtonLoseGame == button)
 gameManager.NewGameState(gameManager.stateGameLost);
 }
}

4. Create a new C# script class called StateGameWon:
using UnityEngine;
using System.Collections;

public class StateGameWon : GameState {
 public StateGameWon(GameManager manager):base(manager){}

 public override void OnMyStateEntered(){
 string stateEnteredMessage =
"ENTER state: StateGameWon";
gameManager.DisplayStateEnteredMessage(stateEnteredMessage);
 Debug.Log(stateEnteredMessage);
 }
 public override void OnMyStateExit(){}
 public override void StateUpdate() {}
 public override void OnButtonClick(ButtonType button){}
}

Improving Games with Extra Features and Optimization

456

5. Create a new C# script class called StateGameLost:
using UnityEngine;
using System.Collections;

public class StateGameLost : GameState {
 public StateGameLost(GameManager manager):base(manager){}

 public override void OnMyStateEntered(){
 string stateEnteredMessage =
"ENTER state: StateGameLost";
gameManager.DisplayStateEnteredMessage(stateEnteredMessage);
 Debug.Log(stateEnteredMessage);
 }
 public override void OnMyStateExit(){}
 public override void StateUpdate() {}
 public override void OnButtonClick(ButtonType button){}
}

6. In the Hierarchy, select the Button-win button, and for its Button (Script) component,
add an OnClick action to call the BUTTON_CLICK_ACTION_WIN_GAME() method
from the GameManager component in the Main Camera GameObject.

7. In the Hierarchy, select the Button-lose button, and for its Button (Script) component,
add an OnClick action to call the BUTTON_CLICK_ACTION_LOSE_GAME() method
from the GameManager component in the Main Camera GameObject.

8. In the Hierarchy, select the Main Camera GameObject. Next, drag into the Inspector
to ensure that all three GameManager (Script) public variables, Text State Messages,
Button Win Game, and Button Lose Game, have the corresponding Canvas
GameObjects dragged into them (the two buttons and the UI text GameObject).

How it works...
The scene is very straightforward for this recipe. There is the single Main Camera GameObject
that has the GameManager script object component attached to it.

A C# scripted class is defined for each state that the game needs to manage—for this
example, the three states StateGamePlaying, StateGameWon, and StateGameLost.
Each of these state classes is a subclass of GameState. GameState defines properties
and methods that all subclass states will possess:

 f An enumerated type ButtonType, which defines the two possible button clicks that
the game might generate: ButtonWinGame and ButtonLoseGame.

 f The gameManager variable: so that each state object has a link to the game manager.

Chapter 11

457

 f The constructor method that accepts a reference to the GameManager:
that automatically makes the gameManager variable refer to the passed
in GameManager object.

 f The four abstract methods OnMyStateEntered(), OnMyStateExit(),
OnButtonClick(…), and StateUpdate(). Note that abstract methods
must have their own implementation for each subclass.

When the GameManager class' Awake() method is executed, three state objects are
created, one for each of the playing/win/lose classes. These state objects are stored in their
corresponding variables: stateGamePlaying, stateGameWon, and stateGameLost.

The GameManager class has a variable called currentState, which is a reference to the
current state object at any time while the game runs (initially, it will be null). Since it is of
the GameState class (the parent of all state classes), it can refer to any of the different
state objects.

After Awake(), GameManager will receive a Start() message. This method initializes the
currentState to be the stateGamePlaying object.

For each frame, the GameManager will receive Update()messages. Upon receiving these
messages, GameManager sends a StateUpdate()messages to the currentState
object. So, for each frame, the object for the current state of the game will execute those
methods. For example, when the currentState is set to game playing, for each frame,
the gamePlayingObject will calls its (in this case, empty) StateUpdate() method.

The StateGamePlaying class implements statements in its OnButtonClick() method so
that when the user clicks on a button, the gamePlayingObject will call the GameManager
instance's NewState() method, passing it the object corresponding to the new state. So,
if the user clicks on Button-win, the NewState() method is passed to gameManager.
stateGameWon.

Reducing the number of objects by
destroying objects at death a time

Optimization principal 1: Minimize the number of active and enabled objects in a scene.

One way to reduce the number of active objects is to destroy objects when they are no
longer needed. As soon as an object is no longer needed, we should destroy it; this saves
both memory and processing resources since Unity no longer needs to send the object such
messages as Update() and FixedUpdate(), or consider object collisions or physics and
so on.

Improving Games with Extra Features and Optimization

458

However, there may be times when we wish not to destroy an object immediately, but at some
known point in the future. Examples might include after a sound has finished playing (see
that recipe Waiting for audio to finish before auto-destructing object in Chapter 9, Playing and
Manipulating Sounds), the player only has a certain time to collect a bonus object before it
disappears, or perhaps an object displaying a message to the player should disappear after
a certain time.

This recipe demonstrates how objects can be told to start dying, and then to automatically
destroy them after a given delay has passed.

How to do it...
To destroy objects after a specified time, follow these steps:

1. Create a new 2D project.

2. Create a UI Button named Click Me, and make it stretch to fill the entire window.

3. In the Inspector, set the Button's Text child to have left-aligned and large text.

4. Add the following script class DeathTimeExample.cs to Button Click Me:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class DeathTimeExample : MonoBehaviour {
 public void BUTTON_ACTION_StartDying() {
 deathTime = Time.time + deathDelay;
 }

 public float deathDelay = 4f;
 private float deathTime = -1;

 public Text buttonText;

 void Update(){
 if(deathTime > 0){
 UpdateTimeDisplay();
 CheckDeath();

Chapter 11

459

 }
 }

 private void UpdateTimeDisplay(){
 float timeLeft = deathTime - Time.time;
 string timeMessage = "time left: " + timeLeft;
 buttonText.text = timeMessage;
 }

 private void CheckDeath(){
 if(Time.time > deathTime) Destroy(gameObject);
 }
}

5. Drag the Text child of Button Click Me into the script's public variable Button Text,
so this script is able to change the button text to show the countdown.

6. With Button Click Me selected in the Hierarchy, add a new On Click() event for this
button, dragging the button itself as the target GameObject and selecting public
function BUTTON_ACTION_StartDying(),as shown in the following screenshot:

7. Now, run the scene; once the button is clicked, the button's text should show the
countdown. Once the countdown gets to zero, Button Click Me will be destroyed
(including all its children, in this case, just the GameObject Text).

How it works...
The float variable deathDelay stores the number of seconds the object waits before
destroying itself once the decision has been made for the object to start dying. The float
variable deathTime either has a value of -1 (no death time yet set) or it is a non-negative
value, which is the time we wish the object to destroy itself.

When the button is clicked, the BUTTON_ACTION_StartDying() method is called. This
method sets this deathTime variable to the current time plus whatever value is set in
deathDelay. This new value for deathTime will be a positive number, meaning the
IF-statement in the Update() method will fire from this point onward.

Improving Games with Extra Features and Optimization

460

Every frame method Update() checks if deathTime is greater than zero (that is, a
death time has been set), and, if so, it then calls, the UpdateTimeDisplay() and
CheckDeath() methods.

The UpdateTimeDisplay() methods creates a string message stating how many seconds
are left and updates the Button Text to show this message.

The CheckDeath() method tests whether the current time has passed the deathTime. If
the death time has passed, then the parent gameObject is immediately destroyed.

When you run the scene, you'll see the Button removed from the Hierarchy once its death
time has been reached.

See also
Refer to the following recipes in this chapter for more information:

 f Reducing the number of enabled objects by disabling objects whenever possible

 f Reducing the number of active objects by making objects inactive whenever possible

Reducing the number of enabled objects by
disabling objects whenever possible

Optimization principal 1: Minimize the number of active and enabled objects in a scene.

Sometimes, we may not want to completely remove an object, but we can identify times when
a scripted component of an object can be safely disabled. If a MonoBehaviour script is
disabled, then Unity no longer needs to send the object messages, such as Update()and
FixedUpdate(), for each frame.

For example, if a Non-Player Character (NPC) should only demonstrate some behavior when
the player can see that character, then we only need to be executing the behavior logic when
the NPC is visible—the rest of the time, we can safely disable the scripted component.

Unity provides the very useful events OnBecameInvisible() and OnBecameVisible(),
which inform an object when it moves out of and into the visible area for one or more cameras
in the scene.

This recipe illustrates the following rule of thumb: if an object has no reason to be doing
actions when it cannot be seen, then we should disable that object while it cannot be seen.

Chapter 11

461

Getting ready
For this recipe, we have prepared a package named unity4_assets_handyman_
goodDirt containing the 3rdPersonController handyman and Terrain material
goodDirt. The package is in the 1362_11_07 folder.

How to do it...
To disable objects to reduce computer processing workload requirements, follow these steps:

1. Create a new Unity project, importing the provided Unity package unity4_assets_
handyman_goodDirt.

2. Create a new Terrain (size 20 x 20, located at -10, 0, -10) and texture-paint it with
GoodDirt (which you'll find in the Standard Assets folder from your import of the
Terrain Assets package).

3. Add a 3rdPersonController at (0, 1, 0).

4. Create a new Cube just in front of your 3rdPersonController (so it is visible in the
Game panel when you start running the game).

Improving Games with Extra Features and Optimization

462

5. Add the following C# script class DisableWhenNotVisible to your Cube:
using UnityEngine;
using System.Collections;

public class DisableWhenNotVisible : MonoBehaviour {
 private GameObject player;

 void Start(){
 player = GameObject.FindGameObjectWithTag("Player");
 }

 void OnBecameVisible() {
 enabled = true;
 print ("cube became visible again");
 }

 void OnBecameInvisible() {
 enabled = false;
 print ("cube became invisible");
 }

 void Update(){
 //do something, so we know when this script is NOT
 doing something!
 float d =
Vector3.Distance(transform.position,
player.transform.position);
 print(Time.time + ":
distance from player to cube = " + d);
 }
}

How it works...
When visible, the scripted DisableWhenNotVisible component of Cube recalculates
and displays the distance from itself to the 3rdPersonController object's transform, via the
variable player in the Update() method for each frame. However, when this object receives
the message OnBecameInvisible(), the object sets its enabled property to false. This
results in Unity no longer sending Update()messages to the GameObject, so the distance
calculation in Update() is no longer performed; thus, reducing the game's processing
workload. Upon receiving the message OnBecameVisible(), the enabled property is set
back to true, and the object will then receive Update() messages for each frame. Note that
you can see the scripted component become disabled by seeing the blue tick in its Inspector
checkbox disappear if you have the Cube selected in the Hierarchy when running the game.

Chapter 11

463

The preceding screenshot shows our Console text output, logging how the user must have
turned away from the cube at 6.9 seconds after starting the game (and so the cube was no
longer visible); then, at 9.4 seconds, the user turned so that they could see the cube again,
causing it to be re-enabled.

There's more...
Some details you don't want to miss:

Note – viewable in Scene panel still counts as visible!
Note that even if the Game panel is not showing (rendering) an object, if the object is visible
in a Scene panel, then it will still be considered visible. Therefore, it is recommended that you
hide/close the Scene panel when testing this recipe, otherwise it may be that the object does
only becomes non-visible when the game stops running.

Another common case – only enable after OnTrigger()
Another common situation is that we only want a scripted component to be active if the
player's character is nearby (within some minimum distance). In these situations, a sphere
collider (with Is Trigger checked) can be set up on the object to be disabled/enabled
(continuing our example, this would be on our Cube), and the scripted component can be
enabled only when the player's character enters that sphere. This can be implemented
by replacing the OnBecameInvisible() and OnBecameVisible() methods with the
OnTriggerEnter() and OnTriggerExit() methods as follows:

void OnTriggerEnter(Collider hitObjectCollider) {
 if (hitObjectCollider.CompareTag("Player")){
 print ("cube close to Player again");
 enabled = true;

Improving Games with Extra Features and Optimization

464

 }
}

void OnTriggerExit(Collider hitObjectCollider) {
 if (hitObjectCollider.CompareTag("Player")){
 print ("cube away from Player");
 enabled = false;
 }
}

The following screenshot illustrates a large sphere collider having been created around the
cube, with its Trigger enabled:

Many computer games (such as Half Life) use environmental design such as corridors
to optimize memory usage by loading and unloading different parts of the environment.
For example, when a player hits a corridor trigger, environment objects load and unload.
See the following for more information about such techniques:

 f http://gamearchitect.net/Articles/StreamingBestiary.html

 f http://cie.acm.org/articles/level-design-optimization-
guidelines-for-game-artists-using-the-epic-games/

 f http://gamedev.stackexchange.com/questions/33016/how-does-3d-
games-work-so-fluent-provided-that-each-meshs-size-is-so-big

http://gamearchitect.net/Articles/StreamingBestiary.html
http://cie.acm.org/articles/level-design-optimization-guidelines-for-game-artists-using-the-epic-games/
http://cie.acm.org/articles/level-design-optimization-guidelines-for-game-artists-using-the-epic-games/
http://gamedev.stackexchange.com/questions/33016/how-does-3d-games-work-so-fluent-provided-that-each-meshs-size-is-so-big
http://gamedev.stackexchange.com/questions/33016/how-does-3d-games-work-so-fluent-provided-that-each-meshs-size-is-so-big

Chapter 11

465

See also
Refer to the following recipes in this chapter for more information:

 f Reducing the number of objects by destroying objects at a death time

 f Reducing the number of active objects by making objects inactive whenever possible

Reducing the number of active objects by
making objects inactive whenever possible

Optimization principal 1: Minimize the number of active and enabled objects in a scene.

Sometimes, we may not want to completely remove an object, but it is possible to go one step
further than disabling a scripted component by making the parent GameObject that contains
the scripted component inactive. This is just like deselecting the checkbox next to the
GameObject in the Inspector, as shown in the following screenshot:

How to do it...
To reduce computer processing workload requirements by making an object inactive when it
becomes invisible, follow these steps:

1. Copy the previous recipe.

2. Remove the scripted component DisableWhenNotVisible from your Cube, and
instead, add the following C# script class InactiveWhenNotVisible to Cube:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class InactiveWhenNotVisible : MonoBehaviour {
 // button action
 public void BUTTON_ACTION_MakeActive(){
 gameObject.SetActive(true);
 makeActiveAgainButton.SetActive(false);
 }

Improving Games with Extra Features and Optimization

466

 public GameObject makeActiveAgainButton;

 private GameObject player;

 void Start(){
 player = GameObject.FindGameObjectWithTag("Player");
 }

 void OnBecameInvisible() {
 makeActiveAgainButton.SetActive(true);
 print ("cube became invisible");
 gameObject.SetActive(false);
 }

 void Update(){
 float d = Vector3.Distance(transform.position, player.
transform.position);
 print(Time.time + ": distance from player to cube =
" + d);
 }
}

3. Create a new Button, containing the text Make Cube Active Again, and position
the button so that it is at the top of the Game panel and stretches the entire width of
the Game panel, as shown in the following screenshot:

4. With the Button selected in the Hierarchy, add a new On Click() event for this button,
dragging the Cube as the target GameObject and selecting public function BUTTON_
ACTION_makeCubeActiveAgain().

5. Uncheck the active checkbox next to the Button name in the Inspector (in other
words, manually deactivate this Button so that we don't see the Button when the
scene first runs).

Chapter 11

467

6. Select the Cube in the Inspector and drag the Button into the
MakeActiveAgainButton variable slot of its script class
InactiveWhenNotVisible component, as shown in the following screenshot:

How it works...
Initially, the Cube is visible and the Button is inactive (so not visible to the user). When the
Cube receives an OnBecameInvisible event message, its OnBecameInvisible()
method will execute. This method performs two actions:

 f It first enables (and therefore makes visible) the Button.

 f It then makes inactive the script's parent gameObject (that is, the Cube
GameObject).

When the Button is clicked, it makes the Cube object active again and makes the Button
inactive again. So, at any one time, only one of the Cube and Button objects are active, and
each makes itself inactive when the other is active.

Note that an inactive GameObject does not receive any messages, so it will not receive
the OnBecameVisible() message, and this may not be appropriate for every object that
is out of sight of the camera. However, when deactivating objects is appropriate, a larger
performance saving is made compared to simply disabling a single scripted Monobehaviour
component of a GameObject.

The only way to reactivate an inactive object is for another object to set the GameObject
component's active property back to true. In this recipe, it is the Button GameObject, which,
when clicked, runs the BUTTON_ACTION_makeCubeActiveAgain() method, which allows
our game to make the Cube active again.

Improving Games with Extra Features and Optimization

468

See also
Refer to the following recipes in this chapter for more information:

 f Reducing the number of objects by destroying objects at a death time

 f Reducing the number of enabled objects by disabling objects whenever possible

Improving efficiency with delegates and
events and avoiding SendMessage!

Optimization principal 2: Minimize actions requiring Unity to perform "reflection" over objects
and searching of all current scene objects.

When events can be based on visibility, distance, or collisions, we can use such events as
OnTriggerExit and OnBecomeInvisible, as described in some of the previous recipes.
When events can be based on time periods, we can use coroutines, as described in other
recipes in this chapter. However, some events are unique to each game situation, and C#
offers several methods of broadcasting user-defined event messages to scripted objects. One
approach is the SendMessage(…) method, which, when sent to a GameObject, will check
every Monobehaviour scripted component and execute the named method if its parameters
match. However, this involves an inefficient technique known as reflection. C# offers another
event message approach known as delegates and events, which we describe and implement
in this recipe. Delegates and events work in a similar way to SendMessage(…), but are
much more efficient since Unity maintains a defined list of which objects are listening to the
broadcast events. SendMessage(…) should be avoided if performance is important, since it
means that Unity has to analyze each scripted object (reflect over the object) to see whether
there is a public method corresponding to the message that has been sent; this is much
slower than using delegates and events.

Delegates and events implement the publish-subscribe design pattern (pubsub). This is also
known as the observer design pattern. Objects can subscribe one of their methods to receive
a particular type of event message from a particular publisher. In this recipe, we'll have a
manager class that will publish new events when UI buttons are clicked. We'll create some
UI objects, some of which subscribe to the color change events, so that each time a color
change event is published, subscribed UI objects receive the event message and change their
color accordingly. C# publisher objects don't have to worry about how many objects subscribe
to them at any point in time (it could be none or 1,000!); this is known as loose coupling,
since it allows different code components to be written (and maintained) independently
and is a desirable feature of object-oriented code.

Chapter 11

469

How to do it...
To implement delegates and events, follow these steps:

1. Create a new 2D project.

2. Add the following C# script class ColorManager to the Main Camera:
using UnityEngine;
using System.Collections;

public class ColorManager : MonoBehaviour {
 public void BUTTON_ACTION_make_green(){
 PublishColorEvent(Color.green);
 }

 public void BUTTON_ACTION_make_blue(){
 PublishColorEvent(Color.blue);
 }

 public void BUTTON_ACTION_make_red(){
 PublishColorEvent(Color.red);
 }

 public delegate void ColorChangeHandler(Color newColor);
 public static event ColorChangeHandler onChangeColor;

 private void PublishColorEvent(Color newColor){
 // if there is at least one listener to this delegate
 if(onChangeColor != null){
 // broadcast change color event
 onChangeColor(newColor);
 }
 }
}

3. Create two UI Image objects and two UI Text objects. Position one Image and Text
object to the lower left of the screen and position the other to the lower right of the
screen. Make the text on the lower left read Not listening, and make the text on the
right of the screen read I am listening. For good measure, add a Slider UI object in
the top right of the screen.

Improving Games with Extra Features and Optimization

470

4. Create three UI buttons in the top left of the screen, named Button-GREEN,
Button-BLUE, and Button-RED, with corresponding text reading make things
<color=green>GREEN</color>, make things <color=blue>BLUE</
color>, and make things <color=red>RED</color>.

5. Attach the following C# script class ColorChangeListenerImage to both the
lower-right Image and also the Slider:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class ColorChangeListenerImage : MonoBehaviour {
 void OnEnable() {
 ColorManager.onChangeColor += ChangeColorEvent;
 }

 private void OnDisable(){
 ColorManager.onChangeColor -= ChangeColorEvent;
 }

 void ChangeColorEvent(Color newColor){
 GetComponent<Image>().color = newColor;
 }
}

Chapter 11

471

6. Attach the following C# script class ColorChangeListenerText to the I am
listening Text UI object:
using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class ColorChangeListenerText : MonoBehaviour {
 void OnEnable() {
 ColorManager.onChangeColor += ChangeColorEvent;
 }

 private void OnDisable(){
 ColorManager.onChangeColor -= ChangeColorEvent;
 }

 void ChangeColorEvent(Color newColor){
 GetComponent<Text>().color = newColor;
 }
}

7. With button-GREEN selected in the Hierarchy, add a new On Click() event for this
button, dragging the Main Camera as the target GameObject and selecting public
function BUTTON_ACTION_make_green(). Do the same for the BLUE and RED
buttons with functions BUTTON_ACTION_make_blue() and BUTTON_ACTION_
make_red() respectively.

8. Run the game. When you click a change color button, the three UI objects on the right
of the screen show all changes to the corresponding color, while the two UI objects at
the bottom left of the screen remain in the default White color.

How it works...
First, let's consider what we want to happen—we want the right-hand Image, Slider, and Text
objects to change their color when they receive an event message OnChangeColor() with a
new color argument.

This is achieved by each object having an instance of the appropriate
ColorChangeListener class that subscribes their OnChangeColor() method to listen
for color change events published from the ColorManager class. Since both the Image
and Slider objects have an image component whose color will change, they have scripted
components of our C# class ColorChangeListenerImage, while the Text object needs
a different class since it is the color of the text component whose color is to be changed (so
we add an instance of C# scripted component ColorChangeListenerText to the Text
UI object). So, as we can see, different objects may respond to receiving the same event
messages in ways appropriate to each different object.

Improving Games with Extra Features and Optimization

472

Since our scripted objects may be disabled and enabled at different times, each time a
scripted ColorChangeListener object is enabled (such as when its GameObject parent
is instantiated), its OnChangeColor() method is added (+=) to the list of those subscribed
to listen for color change events, likewise each time ColorChangeListenerImage/Text
objects are disabled, those methods are removed (-=) from the list of event subscribers.

When a ColorChangeListenerImage/Text object receives a color change message,
its subscribed OnChangeColor() method is executed and the color of the appropriate
component is changed to the received Color value (green/red/blue).

The ColorManager class has a public class (static) variable changeColorEvent, which
defines an event to which Unity maintains a dynamic list of all the subscribed object methods.
It is to this event that ColorChangeListenerImage/Text objects register or deregister
their methods.

The ColorManager class displays three buttons to the user to change all listening objects
to a specific color: green, red, and blue. When a button is clicked, the changeColorEvent
is told to publish a new event, passing a corresponding Color argument to all subscribed
object methods.

The ColorManager class declares a Delegate named ColorChangeHandler. Delegates
define the return type (in this case, void) and argument signature of methods that can
be delegated (subscribed) to an event. In this case, methods must have the argument
signature of a single parameter of type Color. Our OnChangeColor() method in classes
ColorChangeListenerImage/Text match this argument signature and so are permitted
to subscribe to the changeColorEvent in the ColorManager class.

Note: An easy to understand video about Unity delegates and events can
be found at http://www.youtube.com/watch?v=N2zdwKIsXJs.

See also
Refer to the Cache GameObject and component references to avoid expensive lookups recipe
in this chapter for more information.

Executing methods regularly but
independent of frame rate with coroutines

Optimization principal 3: Call methods as few times as possible.

While it is very simple to put logic into Update() and have it regularly executed for each
frame, we can improve game performance by executing logic as rarely as possible. So, if we
can get away with only checking for a situation every 5 seconds, then great performance
savings can be made to move that logic out of Update().

http://www.youtube.com/watch?v=N2zdwKIsXJs

Chapter 11

473

A coroutine is a function that can suspend its execution until a yield action has completed.
One kind of yield action simply waits for a given number of seconds. In this recipe, we use
coroutines and yield to show how a method can be only executed every 5 seconds; this could
be useful for NPCs to decide whether they should randomly wake up or perhaps choose a new
location to start moving toward.

How to do it...
To implement methods at regular intervals independent of the frame rate, follow these steps:

1. Add the following C# script class TimedMethod to the Main Camera:

using UnityEngine;
using System.Collections;

public class TimedMethod : MonoBehaviour {
 private void Start() {
 StartCoroutine(Tick());
 }

 private IEnumerator Tick() {
 float delaySeconds = 5.0F;
 while (true) {
 print("tick " + Time.time);
 yield return new WaitForSeconds(delaySeconds);
 }
 }
}

Improving Games with Extra Features and Optimization

474

How it works...
When the Start() message is received, the Tick() method is started as a coroutine. The
Tick() method sets the delay between executions (variable delaySeconds) to 5 seconds.
An infinite loop is then started, where the method does its actions (in this case, just printing
out the time); finally, a yield instruction is executed, which causes the method to suspend
execution for the given delay of 5 seconds. After the yield instruction has completed, the loop
will continue executing once again and so on. What is important to understand when working
with coroutines is that the method will resume executing from the same state it yielded.

You may have noticed that there are no Update() or FixedUpdate() methods at all. So,
although our game has logic being regularly executed, in this example, there is no logic that
has to be executed every frame—fantastic!

There's more...
Some details you don't want to miss:

Have different actions happening at different intervals
Coroutines can be used to have different kinds of logic being executed at different regular
intervals. So, logic that needs frame-by-frame execution goes into Update(), and logic that
works fine once or twice a second might go into a coroutine with a 0.5-second delay; logic
that can get away with less occasional updating can go into another coroutine with a 2- or
5-second delay, and so on. Effective and noticeable performance improvements can be found
by carefully analyzing (and testing) different game logic to identify the least frequent execution
that is still acceptable.

See also
Refer to the next recipe for more information.

Spreading long computations over several
frames with coroutines

Optimization principal 3: Call methods as few times as possible.

Coroutines allow us to write asynchronous code—we can ask a method to go off and calculate
something, but the rest of the game can keep on running without having to wait for that
calculation to end. Or, we can call a coroutine method for each frame from Update()
and organize the method to complete part of a complex calculation each time it is called.

Chapter 11

475

Note that coroutines are not threads, but they are very handy in that each can progress each
frame further. It also allows us to write code that does not have to wait for certain methods
to complete before another can begin.

When games start requiring complex computations, such as for artificial intelligence reasoning,
it may not be possible to maintain acceptable game performance when trying to complete all
calculations in a single frame—this is where coroutines can be an excellent solution.

This recipe illustrates how a complex calculation can be structured into several pieces,
each to be completed one frame at a time.

Note: An excellent description of coroutines (and other Unity topics) can be
found on Ray Pendergraph's wikidot website http://raypendergraph.
wikidot.com/unity-developer-s-notes#toc6.

How to do it...
To spread computations over several frames, follow these steps:

1. Add the following script class SegmentedCalculation to the Main Camera:
using UnityEngine;
using System.Collections;

public class SegmentedCalculation : MonoBehaviour {
 private const int ARRAY_SIZE = 50;
 private const int SEGMENT_SIZE = 10;
 private int[] randomNumbers;

 private void Awake(){
 randomNumbers = new int[ARRAY_SIZE];
 for(int i=0; i<ARRAY_SIZE; i++){
 randomNumbers[i] = Random.Range(0, 1000);
 }

 StartCoroutine(FindMinMax());
 }

 private IEnumerator FindMinMax() {
 int min = int.MaxValue;
 int max = int.MinValue

 for(int i=0; i<ARRAY_SIZE; i++){

http://raypendergraph.wikidot.com/unity-developer-s-notes#toc6
http://raypendergraph.wikidot.com/unity-developer-s-notes#toc6

Improving Games with Extra Features and Optimization

476

 if(i % SEGMENT_SIZE == 0){
 print("frame: " + Time.frameCount + ", i:" + i + ",
min:" + min + ", max:" + max);

 // suspend for 1 frame since we've completed
another segment
 yield return null;
 }

 if(randomNumbers[i] > max){
 max = randomNumbers[i];
 } else if(randomNumbers[i] < min){
 min = randomNumbers[i];
 }
 }

 // disable this scripted component
 print("** completed - disabling scripted component");
 enabled = false;
 }
}

2. Run the game, and you'll see how the search for highest and lowest values in the
array progresses in steps, avoiding undesirable delays between each new frame.

Chapter 11

477

How it works...
The randomNumbers array of random integers is created in Awake(). Then, the
FindMinMax() method is started as a coroutine. The size of the array is defined by constant
ARRAY_SIZE, and the number of elements to process each frame by SEGMENT_SIZE.

The FindMinMax() method sets initial values for min and max and begins to loop through
the array. If the current index is divisible by the SEGMENT_SIZE (remainder 0), then we make
the method display the current frame number and variable values and suspend execution for
one frame with a yield null statement. For every loop, the value for the current array index
is compared with min and max, and those values are updated if a new minimum or maximum
has been found. When the loop is completed, the scripted component disables itself.

There's more...
Some details you don't want to miss:

Retrieving the complete Unity log text files from your system
As well as seeing log texts in the Console panel, you can also access the Unity editor log text
file as follows:

 f Mac:

 � ~/Library/Logs/Unity/Editor.log

 � And access through the standard Console app

 f Windows:

 � C:\Users\username\AppData\Local\Unity\Editor\Editor.log

 f Mobile devices (see the Unity documentation for accessing device log data)

Improving Games with Extra Features and Optimization

478

For more information about Unity logs files, see the online manual at http://docs.
unity3d.com/Manual/LogFiles.html.

See also
Refer to the Executing methods regularly but independent of frame rate with coroutines
recipe in this chapter for more information.

Evaluating performance by measuring max
and min frame rates (FPS)

Optimization principal 4: Use performance data to drive design and coding decisions.

A useful raw measurement of game performance is the maximum and minimum frame rate
for a section of a game. In this recipe, we make use of a Creative Commons Frames Per
Second (FPS) calculation script to record the maximum and minimum frame rates for a
game performing mathematics calculations for each frame.

Getting ready
For this recipe, we have provided C# script FPSCounter.cs in the 1362_11_12 folder. This
file is the one we have modified to include the maximum and minimum values based on the
Do-It-Yourself (DIY) frame rate calculation script from Annop "Nargus" Prapasapong, kindly
published under Creative Commons on the Unify wiki at http://wiki.unity3d.com/
index.php?title=FramesPerSecond.

How to do it...
To calculate and record the maximum and minimum FPS, follow these steps:

1. Start a new project, and import the FPSCounter.cs script.

2. Add the FPSCounter script class to the Main Camera.

http://docs.unity3d.com/Manual/LogFiles.html
http://docs.unity3d.com/Manual/LogFiles.html
http://wiki.unity3d.com/index.php?title=FramesPerSecond
http://wiki.unity3d.com/index.php?title=FramesPerSecond

Chapter 11

479

3. Add the following C# script class SomeCalculations to the Main Camera:
using UnityEngine;
using System.Collections;

public class SomeCalculations : MonoBehaviour {
 public int outerLoopIterations = 20;
 public int innerLoopMaxIterations = 100;

 void Update(){
 for(int i = 0; i < outerLoopIterations; i++){
 int innerLoopIterations =
Random.Range(2,innerLoopMaxIterations);
 for(int j = 0; j < innerLoopIterations; j++){
 float n = Random.Range(-1000f, 1000f);
 }
 }
 }
}

4. Run the game for 20 to 30 seconds. On the screen, you should see the current
average and the maximum and minimum frame rates displayed.

5. Stop the game running. You should now see in the Console a summary message
stating the max and min frames per second, as shown in the following screenshot:

How it works...
The SomeCalculations script ensures that we make Unity do something for
each frame, in that it performs lots of calculations when the Update() method
is called for each frame. There is an outer loop (loop counter i) of public variable
outerLoopIterations iterations (which we set to 20), and an inner loop (loop counter
j), which is a random number of iterations between 2, and the value of public variable
innerLoopMaxIterations (which we set to 100).

Improving Games with Extra Features and Optimization

480

The work for the calculations of average Frames Per Second (FPS) is performed by the
FPSCounter script, which runs coroutine method FPS() at the chosen frequency (which
we can change in the Inspector). Each time the FPS()method executes, it recalculates the
average frames per second, updates the max and minimum values if appropriate, and, if the
Display While Running checkbox was ticked, then a GUIText object on screen is updated with
a message of the average, max, and min FPS.

Finally, the OnApplicationQuit() method in script class FPSCounter is executed when
the game is terminated and prints to the console the summary max/min FPS message.

There's more...
Some details you don't want to miss:

Turn off runtime display to reduce FPS processing
We have added an option so that you can turn off the runtime display, which will reduce the
processing required for the FPS calculations. You just have to un-check the Display While
Running checkbox in the Inspector.

See also
Refer to the following recipes in this chapter for more information:

 f Identifying performance bottlenecks with the Unity performance Profiler

 f Identifying performance bottlenecks with Do-It-Yourself. performance profiling

Identifying performance bottlenecks with
the Unity performance Profiler

Optimization principal 4: Use performance data to drive design and coding decisions.

Chapter 11

481

As well as following general asset and code design principals, which we know ought to lead
to improved performance, we should be aware that each game is different and that, in reality,
the only way to know which design decisions affect performance the most is to collect and
analyze runtime performance data. While a raw Frames Per Second (FPS) measurement
is useful, to choose between different decisions having detailed information about the
processing requirements for rendering and code execution for each frame is invaluable.

The Unity 5 Profiler offers a detailed breakdown of code and rendering processing
requirements, as well as processing required by GPU, audio, and both 2D and 3D physics.
Perhaps the most useful, it allows programmers to explicitly record data for named code
segments. We will name our profile MATT_SomeCalculations and record and examine
frame-by-frame processing requirements for our calculations.

How to do it...
To record processing requirements using the Unity Profiler, follow these steps:

1. Start a new 2D project.

Improving Games with Extra Features and Optimization

482

2. Open the Profiler window from the Window menu and ensure that the Record option
is selected, and that the Scripts performance data is being collected, as shown in the
following screenshot:

3. Add the following C# script class ProfileCalculations to the Main Camera:
using UnityEngine;
using System.Collections;

public class ProfileCalculations : MonoBehaviour {
 public int outerLoopIterations = 20;
 public int innerLoopMaxIterations = 100;

 void Update(){
 Profiler.BeginSample("MATT_calculations");

 for(int i = 0; i < outerLoopIterations; i++){
 int innerLoopIterations = Random.Range(2,innerLoopMaxIterati
ons);
 for(int j = 0; j < innerLoopIterations; j++){
 float n = Random.Range(-1000f, 1000f);
 }
 }

 Profiler.EndSample();
 }
}

4. Run the game for 20 to 30 seconds.

5. Stop the game running. You should now see in the Profiler panel details of the
breakdown of processing required for the selected frame—each of the jagged
lines in the top right of the Profiler panel represents the collected data for a frame.

Chapter 11

483

6. View data for different frames by dragging the white line to a different horizontal
position—the current frame and the total number of frames are shown at the top right
in the form Frame: frame / totalFrames.

7. Since we have named a code profile sample, prefixed with MATT, we can limit the
display of data to only samples containing that word. In the search text box (next to
the little magnifying glass,) type MATT, and you should now see just a single row of
profile data for our sample MATT_calculations. We can see that for frame 83, our
code took up 1.2 percent of the processing for that frame.

How it works...
The ProfileCalculations script ensures that we make Unity do something for each frame;
it does lots of calculations with an inner and outer loop, just like in the previous FPS recipe.

The two important statements are those that mark the beginning and ending of a named code
sample to be recorded and presented in the Profiler. The Profiler.BeginSample("MATT_
calculations") statement starts our named profile and it is ended with the EndSample()
statement.

Using an eye-catching prefix allows us to easily isolate our named code profile for analysis,
using the search text box in the Profiler panel.

See also
Refer to the following recipes in this chapter for more information:

 f Evaluating performance by measuring max and min frame rates (FPS)

 f Identifying performance bottlenecks with Do-It-Yourself performance profiling

Improving Games with Extra Features and Optimization

484

Identifying performance "bottlenecks" with
Do-It-Yourself performance profiling

Optimization principal 4: Use performance data to drive design and coding decisions.

The Unity 5 performance profiler is great, but there may be times where we wish to have
completed control over the code we are running and how it displays or logs data. In this recipe,
we explore how to use a freely available script for DIY performance profiling. While it's not quite
as fancy as the graphical and detailed profiling of the performance profiler from Unity, it still
provides low-level data about the time required for each frame by named parts of scripts, which
is sufficient for making code design decisions to improve game performance.

Getting ready
For this recipe, we have provided C# script Profile.cs in the 1362_11_14 folder. This is
the DIY profiling script from Michael Garforth, kindly published under Creative Commons on
the Unify Wiki at http://wiki.unity3d.com/index.php/Profiler.

How to do it...
To record processing requirements using Do-It-Yourself code profiling, follow these steps:

1. Start a new project, and import the Profile.cs script.

2. Add the following C# script class DIYProfiling to the Main Camera:
using UnityEngine;
using System.Collections;

public class DIYProfiling : MonoBehaviour {
 public int outerLoopIterations = 20;
 public int innerLoopMaxIterations = 100;

http://wiki.unity3d.com/index.php/Profiler

Chapter 11

485

 void Update(){
 string profileName = "MATT_calculations";
 Profile.StartProfile(profileName);

 for (int i = 0; i < outerLoopIterations; i++){
 int innerLoopIterations = Random.Range(2,innerLoopMaxIterati
ons);
 for (int j = 0; j < innerLoopIterations; j++){
 float n = Random.Range(-1000f, 1000f);
 }
 }

 Profile.EndProfile(profileName);
 }

 private void OnApplicationQuit() {
 Profile.PrintResults();
 }
}

3. Run the game for a few seconds.

4. Stop the game running. You should now see in the Console a summary message
stating total processing time for our named Profile, average time, and number of
iterations, and also the total time for which the game was run.

How it works...
As you can see, the script is almost identical to that used with the Unity profiling in the
previous recipe. Rather than calling the Unity Profiler, we call static (class) methods of
Michael Garforth's Profile class.

We call Profile class methods StartProfile(…) and EndProfile(…) with the string
name for what is to be analyzed (in this example, MATT_calculations).

Finally, the OnApplicationQuit()method is executed when the game is terminated, calling
the PrintResuls() method of the Profile class, which prints to the console the summary
performance information.

The Profile class records how many times, and how long between Start and End, each
named profile is called, outputting summary information about these executions when
PrintResuls() is called.

Improving Games with Extra Features and Optimization

486

See also
Refer to the following recipes in this chapter for more information:

 f Evaluating performance by measuring max and min frame rates (FPS)

 f Identifying performance bottlenecks with the Unity performance Profiler

Cache GameObject and component
references to avoid expensive lookups

Optimization principal 2: Minimize actions requiring Unity to perform "reflection" over objects
and searching of all current scene objects.

Reflection is when, at run time, Unity has to analyze objects to see whether they contain
a method corresponding to a "message" that the object has received - an example would
be SendMessage(). An example of making Unity perform a search over all active objects
in a scene would be the simple and useful, but slow, FindObjectsByTag(). Another
action that slows Unity down is each time we make it look up an object's component using
GetComponent().

Chapter 11

487

In the olden days for many components, Unity offered quick component property getters such
as .audio to reference the AudioSource component of a script's parent GameObject,
rigidbody to reference the RigidBody component, and so on. However, this wasn't a
consistent rule, and in other cases, you had to use GetComponent(). With Unity 5, all these
quick component property getters have been removed (with the exception of .transform,
which is automatically cached, so has no performance cost to use). To help game developers
update their scripts to work with Unity 5, they introduced Automatic Script Updating,
whereby (after a suitable warning to have backed up files before going ahead!) Unity will
go through scripts replacing quick component property getters code with the standardized
GetComponent<ComponentTyle>() code pattern, such as GetComponent<Rigidbody>()
and GetComponent<AudioSource>(). However, while script updating makes things
consistent, and also makes explicit all these GetComponent() reflection statements, each
GetComponent() execution eats up valuable processing resources.

You can read more about Unity's reasons for this (and the alternative
Extension Methods approach they rejected; a shame—I think we'll see
them appear in a later version of Unity since it's an elegant way to solve
this coding situation) in this June 2014 blog post and manual page at:

 f http://blogs.unity3d.com/2014/06/23/unity5-
api-changes-automatic-script-updating/

 f http://unity3d.com/learn/tutorials/modules/
intermediate/scripting/extension-methods

In this recipe, we'll incrementally refactor a method, making it more efficient at each step by
removing reflection and component lookup actions. The method we'll improve is to find half
the distance from the GameObject in the scene tagged Player (a 3rd Person Controller)
and 1,000 other GameObjects in the scene tagged Respawn.

Getting ready
For this recipe, we have prepared a package named unity4_assets_handyman_
goodDirt containing the 3rdPersonController handyman and Terrain material goodDirt.
The package is in the folder 1362_11_15.

How to do it...
To improve code performance by caching component lookups, follow these steps:

1. Create a new 3D project, importing the provided Unity package unity4_assets_
handyman_goodDirt.

2. Create a new Terrain (size 200 x 200, located at -100, 0, -100) and texture-paint it
with GoodDirt.

http://blogs.unity3d.com/2014/06/23/unity5-api-changes-automatic-script-updating/
http://blogs.unity3d.com/2014/06/23/unity5-api-changes-automatic-script-updating/
http://unity3d.com/learn/tutorials/modules/intermediate/scripting/extension-methods
http://unity3d.com/learn/tutorials/modules/intermediate/scripting/extension-methods

Improving Games with Extra Features and Optimization

488

3. Add a 3rdPersonController at the center of the terrain (that is, 0, 1, 0). Note that this
will already be tagged Player.

4. Create a new Sphere and give it the tag Respawn.

5. In the Project panel, create a new empty prefab named prefab_sphere and drag the
Sphere from the Hierarchy panel into your prefab in the Project panel.

6. Now, delete the Sphere from the Hierarchy panel (since all its properties have been
copied into our prefab).

7. Add the following C# script class SphereBuilder to the Main Camera:
using UnityEngine;
using System.Collections;

public class SphereBuilder : MonoBehaviour
{
 public const int NUM_SPHERES = 1000;
 public GameObject spherePrefab;

 void Awake(){
 List<Vector3> randomPositions =
BuildVector3Collection(NUM_SPHERES);
 for(int i=0; i < NUM_SPHERES; i++){
 Vector3 pos = randomPositions[i];
 Instantiate(spherePrefab, pos, Quaternion.identity);
 }
 }

 public List<Vector3> BuildVector3Collection(int numPositions){
 List<Vector3> positionArrayList = new List<Vector3>();
 for(int i=0; i < numPositions; i++) {
 float x = Random.Range(-100, 100);
 float y = Random.Range(1, 100);
 float z = Random.Range(-100, 100);
 Vector3 pos = new Vector3(x,y,z);
 positionArrayList.Add (pos);
 }

 return positionArrayList;
 }
}

Chapter 11

489

8. With the Main Camera selected in the Hierarchy, drag prefab_sphere from the
Project panel in Inspector public variable Sphere Prefab, for script component
SphereBuilder, as shown in the following screenshot:

9. Add the following C# script class SimpleMath to the Main Camera:
using UnityEngine;
using System.Collections;

public class SimpleMath : MonoBehaviour {
 public float Halve(float n){
 return n / 2;
 }
}

Method 1 – AverageDistance calculation
Follow these steps:

1. Add the following C# script class AverageDistance to the Main Camera:
using UnityEngine;
using System.Collections;
using System;

public class AverageDistance : MonoBehaviour
{
 void Update(){
 // method1 - basic
 Profiler.BeginSample("TESTING_method1");
 GameObject[] sphereArray = GameObject.FindGameObjectsWithTag("
Respawn");
 for (int i=0; i < SphereBuilder.NUM_SPHERES; i++){
 HalfDistanceBasic(sphereArray[i].transform);
 }
 Profiler.EndSample();
 }

 // basic
 private void
HalfDistanceBasic(Transform sphereGOTransform){

Improving Games with Extra Features and Optimization

490

 Transform playerTransform =
GameObject.FindGameObjectWithTag("Player").transform;
 Vector3 pos1 = playerTransform.position;
 Vector3 pos2 = sphereGOTransform.position;

 float distance = Vector3.Distance(pos1, pos2);

 SimpleMath mathObject = GetComponent<SimpleMath>();
 float halfDistance = mathObject.Halve(distance);
 }
}

2. Open the Profiler panel and ensure that record is selected and and that the script
processing load is being recorded.

3. Run the game for 10 to 20 seconds.

4. In the Profiler panel, restrict the listed results to only samples starting with TEST.
For whichever frame you select, you should see the percentage CPU load and
milliseconds required for TESTING_method1.

Method 2 – Cache array of Respawn object transforms
Follow these steps:

1. FindGameObjectWithTag() is slow, so let's fix that for the search for objects
tagged Respawn. First, in C# script class AverageDistance, add a private
Transform array variable named sphereTransformArrayCache:
private Transform[] sphereTransformArrayCache;

2. Now, add the Start() method, the statement that stores in this array references to
the Transform component of all our Respawn tagged objects:
private void Start(){
 GameObject[] sphereGOArray =
GameObject.FindGameObjectsWithTag("Respawn");
 sphereTransformArrayCache =
new Transform[SphereBuilder.NUM_SPHERES];
 for (int i=0; i < SphereBuilder.NUM_SPHERES; i++){
 sphereTransformArrayCache[i] =
sphereGOArray[i].transform;
 }
}

Chapter 11

491

3. Now, in the Update()method, start a new Profiler sample named TESTING_
method2, which uses our cached array of games objects tagged with Respawn:
// method2 - use cached sphere ('Respawn' array)
Profiler.BeginSample("TESTING_method2");
for (int i=0; i < SphereBuilder.NUM_SPHERES; i++){
 HalfDistanceBasic(sphereTransformArrayCache[i]);
}
Profiler.EndSample();

4. Once again, run the game for 10 to 20 seconds and set the Profiler panel to restrict
the listed results to only samples starting with TEST. For whichever frame you select,
you should see the percentage CPU load and milliseconds required for TESTING_
method1 and TESTING_method2.

Method 3 – Cache reference to Player transform
That should run faster. But wait! Let's improve things some more. Let's make use of a cached
reference to Cube-Player component's transform, avoiding the slow object-tag reflection
lookup altogether. Follow these steps:

1. First, add a new private variable and a statement in the Start()method to assign
the Player object's transform in this variable playerTransformCache:
private Transform playerTransformCache;
private Transform[] sphereTransformArrayCache;

private void Start(){
 GameObject[] sphereGOArray =
GameObject.FindGameObjectsWithTag("Respawn");
 sphereTransformArrayCache = new Transform[SphereBuilder.NUM_
SPHERES];
 for (int i=0; i < SphereBuilder.NUM_SPHERES; i++){
 sphereTransformArrayCache[i] =
sphereGOArray[i].transform;
 }

 playerTransformCache =
GameObject.FindGameObjectWithTag("Player").transform;
}

2. Now, in Update(), add the following code to start a new Profiler sample named
TESTING_method3:
// method3 - use cached playerTransform
Profiler.BeginSample("TESTING_method3");
for (int i=0; i < SphereBuilder.NUM_SPHERES; i++){

Improving Games with Extra Features and Optimization

492

HalfDistanceCachePlayerTransform(sphereTransformArrayCache[i]);
}
Profiler.EndSample();

3. Finally, we need to write a new method that calculates the half distance making use
of the cached player transform variable we have set up. So, add this new method,
HalfDistanceCachePlayerTransform(sphereTransformArrayCache[i]
):

// playerTransform cached
private void
HalfDistanceCachePlayerTransform(Transform sphereGOTransform){
 Vector3 pos1 = playerTransformCache.position;
 Vector3 pos2 = sphereGOTransform.position;
 float distance = Vector3.Distance(pos1, pos2);
 SimpleMath mathObject = GetComponent<SimpleMath>();
 float halfDistance = mathObject.Halve(distance);
}

Method 4 – Cache Player's Vector3 position
Let's improve things some more. If, for our particular game, we can make the assumption that
the player character does not move, we have an opportunity to cache the player's position
once, rather than retrieving it for each frame.

Follow these steps:

1. At the moment, to find pos1, we are making Unity find the position Vector3 value
inside playerTransform every time the Update() method is called. Let's cache
this Vector3 position with a variable and statement in Start(), as follows:
private Vector3 pos1Cache;

private void Start(){
...
pos1Cache = playerTransformCache.position;
}

2. Now, write a new half-distance method that makes use of this cached
position:
// player position cached
private void
HalfDistanceCachePlayer1Position(Transform sphereGOTransform){
 Vector3 pos1 = pos1Cache;
 Vector3 pos2 = sphereGOTransform.position;
 float distance = Vector3.Distance(pos1, pos2);

Chapter 11

493

 SimpleMath mathObject = GetComponent<SimpleMath>();
 float halfDistance = mathObject.Halve(distance);
}

3. Now, in the Update() method, add the following code so that we create a new
sample for our method 4, and call our new half-distance method:
// method4 - use cached playerTransform.position
Profiler.BeginSample("TESTING_method4");
for (int i=0; i < SphereBuilder.NUM_SPHERES; i++){
 HalfDistanceCachePlayer1Position(sphereTransformArrayCache[i]);
}
Profiler.EndSample();

Method 5 – Cache reference to SimpleMath component
That should improve things again. But we can still improve things—you'll notice in our latest
half-distance method that we have an explicit GetComponent() call to get a reference to our
mathObject; this will be executed every time the method is called. Follow these steps:

1. Let's cache this scripted component reference as well to save a GetComponent()
reflection for each iteration. We'll declare a variable mathObjectCache, and in
Awake(), we will set it to refer to our SimpleMath scripted component:
private SimpleMath mathObjectCache;

private void Awake(){
 mathObjectCache = GetComponent<SimpleMath>();
}

2. Let's write a new half-distance method that uses this cached reference to the math
component HalfDistanceCacheMathComponent(i):
// math Component cache
private void HalfDistanceCacheMathComponent(Transform
sphereGOTransform){
 Vector3 pos1 = pos1Cache;
 Vector3 pos2 = sphereGOTransform.position;
 float distance = Vector3.Distance(pos1, pos2);
 SimpleMath mathObject = mathObjectCache;
 float halfDistance = mathObject.Halve(distance);
}

Improving Games with Extra Features and Optimization

494

3. Now, in the Update() method, add the following code so that we create a new
sample for our method5 and call our new half-distance method:
// method5 - use cached math component
Profiler.BeginSample("TESTING_method5");
for (int i=0; i < SphereBuilder.NUM_SPHERES; i++){
 HalfDistanceCacheMathComponent(sphereTransformArrayCache[i]);
}
Profiler.EndSample();

Method 6 – Cache array of sphere Vector3 positions
We've improved things quite a bit, but there is still a glaring opportunity to use caching to
improve our code (if we can assume that the spheres do not move, which seems reasonable
in this example). At present, for every frame and every sphere in our half-distance calculation
method, we are asking Unity to retrieve the value of the Vector3 position property in the
transform of the current sphere (this is our variable pos2), and this position is used to calculate
the distance of the current sphere from Player. Let's create an array of all those Vector3
positions so that we can pass the current one to our half-distance calculation method and
save the work of retrieving it so many times.

Follow these steps:

1. First, add a new private variable and a statement inside our existing loop in the
Start() method to assign each sphere's Vector3 transform position in the
array spherePositionArrayCache:
private Vector3[] spherePositionArrayCache =
new Vector3[SphereBuilder.NUM_SPHERES];

private void Start(){
 GameObject[] sphereGOArray =
GameObject.FindGameObjectsWithTag("Respawn");
 sphereTransformArrayCache = new Transform[SphereBuilder.NUM_
SPHERES];
 for (int i=0; i < SphereBuilder.NUM_SPHERES; i++){
 sphereTransformArrayCache[i] =
sphereGOArray[i].transform;
 spherePositionArrayCache[i] =
sphereGOArray[i].transform.position;
 }

 playerTransformCache =
GameObject.FindGameObjectWithTag("Player").transform;
 pos1Cache = playerTransformCache.position;
}

Chapter 11

495

2. Let's write a new half-distance method that uses this array of cached positions:
// sphere position cache
private void
HalfDistanceCacheSpherePositions(Transform sphereGOTransform,
Vector3 pos2){
 Vector3 pos1 = pos1Cache;
 float distance = Vector3.Distance(pos1, pos2);
 SimpleMath mathObject = mathObjectCache;
 float halfDistance = mathObject.Halve(distance);
}

3. Now, in the Update()method, add the following code so that we create a
new sample for our method6 and call our new half-distance method:
// method6 - use cached array of sphere positions
Profiler.BeginSample("TESTING_method6");
for (int i=0; i < SphereBuilder.NUM_SPHERES; i++){
HalfDistanceCacheSpherePositions(sphereTransformArrayCache[i],
spherePositionArrayCache[i]);
}
Profiler.EndSample();

4. Open the Profiler panel and ensure that record is selected and script processing load
is being recorded.

5. Run the game for 10 to 20 seconds.

6. In the Profiler panel, restrict the listed results to only samples starting with TEST.
For whichever frame you select, you should see the percentage CPU load and
milliseconds required for each method (lower is better for both these values!). For
almost every frame, you should see how/if each method refined by caching has
reduced the CPU load.

Improving Games with Extra Features and Optimization

496

How it works...
This recipe illustrates how we try to cache references once, before any iteration, for
variables whose value will not change, such as references to GameObjects and their
components, and, in this example, the Transform components and Vector3 positions
of objects tagged Player and Respawn. Of course, as with everything, there is a "cost"
associated with caching, and that cost is the memory requirements to store all those
references. This is known as the Space-Time Tradeoff. You can learn more about this
classic computer science speed versus memory tradeoff at https://en.wikipedia.
org/wiki/Space%E2%80%93time_tradeoff.

In methods that need to be performed many times, this removing of implicit and explicit
component and object lookups may offer a measurable performance improvement.

Note: Two good places to learn more about Unity performance
optimization techniques are from the Performance Optimization web
page in the Unity script reference and from Unity's Jonas Echterhoff and
Kim Steen Riber Unite2012 presentation Performance Optimization Tips
and Tricks for Unity. Many recipes in this chapter had their origins from
suggestions in the following sources:

 f http://docs.unity3d.com/410/Documentation/
ScriptReference/index.Performance_
Optimization.html

 f http://unity3d.com/unite/archive/2012

See also
Refer to the following recipes in this chapter for more information:

 f Improving efficiency with delegates and events and avoiding SendMessage!

 f Identifying performance bottlenecks with the Unity performance Profiler

 f Identifying performance bottlenecks with Do-It-Yourself performance profiling

Improving performance with LOD groups
Optimization principal 5: Minimize the number of draw calls.

Detailed geometry and high-resolution texture maps can be a double-edged sword: they can
deliver a better visual experience, but they can impact negatively on the game's performance.
LOD groups address this issue by replacing high-quality objects by simplified versions
whenever that object takes up a smaller portion of the screen than necessary for a
high-quality version to make a significant difference.

https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff
https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff
http://docs.unity3d.com/410/Documentation/ScriptReference/index.Performance_Optimization.html
http://docs.unity3d.com/410/Documentation/ScriptReference/index.Performance_Optimization.html
http://docs.unity3d.com/410/Documentation/ScriptReference/index.Performance_Optimization.html
http://unity3d.com/unite/archive/2012

Chapter 11

497

In this recipe, we will use a LOD group to create a game object featuring two different levels
of detail: a high-quality version for whenever the object takes up more than 50 percent of the
screen and a low-quality version for the times it takes up less than that amount. We would
like to thank Carl Callewaert, from Unity, for his demonstration of the LOD Group functionality,
which has informed this recipe in many ways.

Getting ready
For this recipe, we have prepared two prefabs for the high- and low-quality versions of the
game object. They share the same dimensions and transform settings (position, rotation, and
scale), so that they can replace each other seamlessly. Both prefabs are contained within the
package named LODGroup, available in the 1362_11_16 folder.

How to do it...
To create a LOD group, follow these steps:

1. Import the LODGroup package into your project.

2. From the Project view, inside the LOD folder, drag the batt-high prefab into the
Hierarchy view. Then, do the same for the batt-low prefab. Make sure that they are
placed at the same Position (X: 0; Y: 0; Z: 0).

3. From the Create drop-down menu in the Hierarchy view, create a new empty
game object (Create | Create Empty). Rename it battLOD.

4. Add the LODGroup component to battLOD (menu Component | Rendering |
LODGroup).

Improving Games with Extra Features and Optimization

498

5. Select the battLOD object, and, from the Inspector view, LODGroup component,
right-click on LOD 2 and delete it (since we'll have only two different LODs: LOD 0
and LOD 1), as shown in the following screnshot:

6. Select the LOD 0 area, click on the Add button, and select the batt-high game object
from the list. A message about reparenting objects will appear. Select Yes, Reparent.

Chapter 11

499

7. Select the LOD 1 section, click on Add, and select the batt-low object. Again, chose
Yes, Reparent when prompted.

8. Drag the limits of the LOD renderers to set them as: LOD 0: 100%, LOD 1: 50%,
Culled: 1%. That will make Unity render bat-high whenever it occupies 51 percent to
100 percent of the screen space, batt-low when 2 percent to 50 percent, and will
not render anything if 1 percent or less.

9. Move the scene's camera toward the battLOD object and back. You will notice how
Unity swaps between the high- and low-definition LOD renderer as it occupies more
or less than 50 percent of the screen's space.

How it works...
Once we have populated the LOD renderers with the appropriate models, the LODGroup
component will select and display the right renderer based on how much of the screen's
percentage the object takes up, or even display nothing at all.

Improving Games with Extra Features and Optimization

500

There's more...
Some details you don't want to miss:

Adding more LOD renderers
You can add more LOD renderers by right-clicking on an existing LOD renderer and selecting
Insert Before from the context menu.

Fading LOD transitions
In case you want to minimize the popping that occurs when renderers are swapped, you can
try changing the parameter Fade Mode from None to Percentage or Crossfade.

See also
Refer to the next recipe in this chapter for more information

Improving performance through reduced
draw calls by designing for draw call
batching

Optimization principal 5: Minimize the number of draw calls.

One way to minimize draw calls is by prioritizing design decisions to qualify objects for Unity's
Static and Dynamic draw call batching.

The more CPU-efficient batching method is Unity's static batching. It allows reduction of
draw calls for any sized geometry. If that is not possible, then the next best thing is dynamic
batching, which again allows Unity to process together several moving objects in a single
draw call.

Note that there is a cost—batching uses memory, and static batching uses more memory than
dynamic memory. So, you can improve performance with batching, but you'll be increasing
the scene's memory "footprint." As always, use memory and performance profiling to evaluate
which use of techniques is best for your game and its intended deployment device.

How to do it...
In this section, we will learn how to make possible static batching and dynamic batching.

Chapter 11

501

Static batching
To make possible Unity static batching, you need to do the following:

1. Ensure that models share the same material.

2. Mark models as Static, as shown in the following screenshot:

Objects that can be safely marked as Static include environment objects that won't move or
be scaled.

Many techniques can be used to ensure models share the same material including:

 f Avoid using textures by directly painting vertices of the model (useful links for this are
provided in the There's more… section)

 f Increasing the number of objects textured with exactly the same texture

 f Artificially enabling objects to share the same texture by combining multiple textures
into a single one (texture atlassing)

 f Maximizing script use of Renderer.sharedMaterial rather than Renderer.
material (since use of Render.material involves making a copy of the material
and, therefore, disqualifies that GameObejct for batching)

In fact, both static and dynamic batching only work with objects that use the same material,
so all methods above apply equally for making dynamic batching possible as well.

Dynamic batching
To make possible Unity dynamic batching, you need to do the following:

1. Ensure that models share the same material.

2. Keep the number of vertex attributes below 900 for each mesh.

3. Have the group of objects to quality for dynamic batching to use the same
transform scale (although non-uniform scaled models can still be batched).

4. If possible, have dynamic lightmapped objects point to the same lightmap
location to facilitate dynamic batching.

5. Avoid the use of multi-pass shaders and real-time shadows if possible, since both of
these prevent dynamic batching.

Improving Games with Extra Features and Optimization

502

To calculate the number of vertex attributes, you need to multiply the number of vertices by
the number of attributes used by the Shader. For example, for a Shader using three attributes
(vertex position, normal, and UV), it would mean that a model must have less than 300
vertices to keep the total number of attributes below 900 to qualify for dynamic batching.

There's more...
Some details you don't want to miss:

Reduce the need for textures by vertex painting
For more information about this topic, see the following:

 f Blender:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Materials/
Special_Effects/Vertex_Paint

 f 3D Studio Max:
http://3dmax-tutorials.com/Vertex_Paint_Modifier.html

 f Maya: free Vertex Chameleon plugin
http://renderheads.com/portfolio/VertexChameleon/

Information sources about reducing textures and materials
For more information about this topic, see the following:

 f Unity manual page for Draw Call Batching:

http://docs.unity3d.com/Manual/DrawCallBatching.html

 f Paladin Studios:
http://www.paladinstudios.com/2012/07/30/4-ways-to-increase-
performance-of-your-unity-game/

 f Nvidia white paper on texture atlassing to increase draw call batching opportunities:
http://http.download.nvidia.com/developer/NVTextureSuite/Atlas_
Tools/Texture_Atlas_Whitepaper.pdf

 f Nvidia free texture tools and Photoshop plug-in:

http://www.nvidia.com/object/texture_atlas_tools.html

See also
Refer to the Improving performance with LOD groups recipe in this chapter for more information

http://wiki.blender.org/index.php/Doc:2.6/Manual/Materials/Special_Effects/Vertex_Paint
http://wiki.blender.org/index.php/Doc:2.6/Manual/Materials/Special_Effects/Vertex_Paint
http://3dmax-tutorials.com/Vertex_Paint_Modifier.html
http://renderheads.com/portfolio/VertexChameleon/
http://docs.unity3d.com/Manual/DrawCallBatching.html
http://www.paladinstudios.com/2012/07/30/4-ways-to-increase-performance-of-your-unity-game/
http://www.paladinstudios.com/2012/07/30/4-ways-to-increase-performance-of-your-unity-game/
http://http.download.nvidia.com/developer/NVTextureSuite/Atlas_Tools/Texture_Atlas_Whitepaper.pdf
http://http.download.nvidia.com/developer/NVTextureSuite/Atlas_Tools/Texture_Atlas_Whitepaper.pdf
http://www.nvidia.com/object/texture_atlas_tools.html

Chapter 11

503

Conclusion
In this chapter, we have introduced some extra features and a range of approaches to improve
game performance and collect performance data for analysis.

The first three recipes in this chapter provide some ideas for adding some extra features to
your game (pausing, slow motion, and securing online games). The rest of the recipes in this
chapter provide examples of how to investigate and improve the efficiency and performance of
your game.

There's more...
Just as there are many components in a game, there are many parts of a game where
processing bottlenecks may be found and need to be addressed to improve overall game
performance. Some additional suggestions and further reference sources are now provided
to provide a launching pad for your further exploration of the issues of optimization and
performance, since such topics could take up a whole book rather than just one chapter.

Game audio optimization
Mobile devices have considerably less memory and processing resources than consoles,
desktops, or even laptops, and often raise the biggest challenges when it comes to
game audio. For example, the iPhone can only decompress one audio clip at a time, so
a game may suffer processing spikes (that is, slow down game frame rate) due to audio
decompression issues.

Paladin Studios recommend the following audio file compression strategies for mobile games:

 f Short Clips: Native (no compression)

 f Longer clips (or ones that loop): Compressed in memory

 f Music: Stream from disc

 f Files which consistently cause CPU spikes: Decompress on load

For more information about this topic, see the following:

 f Unity manual audio:

http://docs.unity3d.com/Manual/AudioFiles.html

 f Paladin Studios:
http://www.paladinstudios.com/2012/07/30/4-ways-to-increase-
performance-of-your-unity-game/

http://docs.unity3d.com/Manual/AudioFiles.html
http://www.paladinstudios.com/2012/07/30/4-ways-to-increase-performance-of-your-unity-game/
http://www.paladinstudios.com/2012/07/30/4-ways-to-increase-performance-of-your-unity-game/

Improving Games with Extra Features and Optimization

504

 f Apple developers audio page:
https://developer.apple.com/library/ios/documentation/
AudioVideo/Conceptual/MultimediaPG/UsingAudio/UsingAudio.html

Physics engine optimization
For some strategies relating to physics, you might consider to improve performance the
following:

 f If possible, use geometric primitive colliders (2D box/2D circle/3D box/3D
sphere/3D cylinder):

 � You can have multiple primitive colliders

 f You can also have primitive colliders on child objects:

 � As long as you have a rigid body on the root object in the object hierarchy

 f Avoid 2D polygon and 3D mesh colliders:

 � These are much more processor intensive

 f Try increasing the delay between each FixedUpdate() method call to reduce
physics:

 � Although not to the point where user experience or game behavior is below
acceptable quality!

 f Wherever possible, start off rigid bodies in sleep mode (so that they don't require
physics processing until woken up by code or a collision). See the following Unity
script reference pages for making objects go to sleep and wake up:

 � http://docs.unity3d.com/ScriptReference/Rigidbody.Sleep.
html

 � http://docs.unity3d.com/ScriptReference/Rigidbody.
WakeUp.html

https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/MultimediaPG/UsingAudio/UsingAudio.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/MultimediaPG/UsingAudio/UsingAudio.html
http://docs.unity3d.com/ScriptReference/Rigidbody.Sleep.html
http://docs.unity3d.com/ScriptReference/Rigidbody.Sleep.html
http://docs.unity3d.com/ScriptReference/Rigidbody.WakeUp.html
http://docs.unity3d.com/ScriptReference/Rigidbody.WakeUp.html

Chapter 11

505

More tips for improving script efficiency
Some code strategies you might consider to improve performance include the following:

 f Use Structs rather than Classes to improve speed up processing.

 f Wherever possible, use simple arrays of primitive types rather than ArrayLists,
Dictionaries, or more complex collection classes. A good article about choosing the
most appropriate collection in Unity can be found at http://wiki.unity3d.com/
index.php/Choosing_the_right_collection_type.

 f Raycasting is slow, so avoid performing it every frame, for example, use coroutines to
only raycast every 3rd or 10th frame.

 f Finding objects is slow, so avoid finding objects in Update() or inner loops, and you
can have objects set up a public static variable to allow quick instance retrieval,
rather than using a Find(…) method. Or you could use the Singleton design pattern.

 f Avoid using OnGUI(), since it is called every frame just like Update(); this is much
easier to avoid now with the new Unity 5 UI system.

Sources of more wisdom about optimization
Here are several other sources that you might want to explore to learn more about game
optimization topics:

 f Unity general mobile optimization page:

http://docs.unity3d.com/Manual/MobileOptimisation.html

 f X-team Unity best practices:
http://x-team.com/2014/03/unity-3d-optimisation-and-best-
practices-part-1/

 f Code Project:
http://www.codeproject.com/Articles/804021/Unity-and-Csharp-
Performance-Optimisation-tips

 f General graphics optimization:
http://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.
html

 f Learn more about mobile physics at Unity's iPhone optimization physics page:
http://docs.unity3d.com/Manual/iphone-Optimizing-Physics.html

http://wiki.unity3d.com/index.php/Choosing_the_right_collection_type
http://wiki.unity3d.com/index.php/Choosing_the_right_collection_type
http://docs.unity3d.com/Manual/MobileOptimisation.html
http://x-team.com/2014/03/unity-3d-optimisation-and-best-practices-part-1/
http://x-team.com/2014/03/unity-3d-optimisation-and-best-practices-part-1/
http://www.codeproject.com/Articles/804021/Unity-and-Csharp-Performance-Optimisation-tips
http://www.codeproject.com/Articles/804021/Unity-and-Csharp-Performance-Optimisation-tips
http://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.html
http://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.html
http://docs.unity3d.com/Manual/iphone-Optimizing-Physics.html

Improving Games with Extra Features and Optimization

506

Published articles that discuss premature optimization
Here are several articles discussing Donald Knuth's famous quotation about premature
optimization being "evil":

 f Joe Duffy's blog:
http://joeduffyblog.com/2010/09/06/the-premature-optimization-
is-evil-myth/

 f "When is optimization premature?" Stack Overflow:
http://stackoverflow.com/questions/385506/when-is-optimisation-
premature

 f The Fallacy of Premature Optimization, Randall Hyde (published by ACM), source:
Ubiquity Volume 10, Issue 3, 2009:

http://ubiquity.acm.org/article.cfm?id=1513451

Sources of more about Game Managers and the State Pattern
Learn more about implementing the State Pattern and Game Managers in Unity from the
following sites:

 f http://rusticode.com/2013/12/11/creating-game-manager-using-
state-machine-and-singleton-pattern-in-unity3d/

 f https://github.com/thefuntastic/Unity3d-Finite-State-Machine

http://joeduffyblog.com/2010/09/06/the-premature-optimization-is-evil-myth/
http://joeduffyblog.com/2010/09/06/the-premature-optimization-is-evil-myth/
http://stackoverflow.com/questions/385506/when-is-optimisation-premature
http://stackoverflow.com/questions/385506/when-is-optimisation-premature
http://ubiquity.acm.org/article.cfm?id=1513451
http://rusticode.com/2013/12/11/creating-game-manager-using-state-machine-and-singleton-pattern-in-unity3d/
http://rusticode.com/2013/12/11/creating-game-manager-using-state-machine-and-singleton-pattern-in-unity3d/
https://github.com/thefuntastic/Unity3d-Finite-State-Machine

507

12
Editor Extensions

In this chapter, we will cover the following topics:

 f An editor extension to allow pickup type (and parameters) to be changed at design
time via a custom Inspector UI

 f An editor extension to add 100 randomly located copies of a prefab with one
menu click

 f A progress bar to display proportion completed of Editor extension processing

 f An editor extension to have an object-creator GameObject, with buttons to instantiate
different pickups at cross-hair object location in scene

Introduction
One aspect of game development in general (and inventories as our particular examples in
this chapter) is the distinction about when we undertake an activity. Run-time is when the
game is running (and when all our software and UI choices take affect). However, design-time
is the time when different members of our game design team work on constructing a wide
range of game components, including the scripts, audio and visual assets, and the process
of constructing each game level (or "scene" in Unity-speak).

In this chapter, we will introduce several recipes that make use of Unity's Editor extensions;
these are scripting and multimedia components that enable a game software engineer to
make design-time work easier and less likely to introduce errors. Editor extensions allow
workflow improvements, thus allowing designers to achieve their goals quicker and more
easily; for example, removing the need for any scripting knowledge when generating many
randomly located inventory pickups in a scene via a menu choice, or editing the type or
properties of pickups being hand-placed in different locations in a level.

Editor Extensions

508

While Editor extensions are quite an advanced topic, having someone on your team who
can write custom editor components, such as those we illustrate, can greatly increase the
productivity of a small team with only one or two members who are confident at scripting.

An editor extension to allow pickup type
(and parameters) to be changed at design
time via a custom Inspector UI

The use of enums and corresponding drop-down menus in the Inspector panel to restrict
changes to one of a limited set often works fine (for example, pickup types for a pickup
object). However, the trouble with this approach is, when two or more properties are related
and need to be changed together, there is a danger of changing one property, for example,
pickup type from Heart to Key, but forgetting to change corresponding properties; for example,
leaving the Sprite Renderer component still showing a Heart sprite. Such mismatches cause
problems both in terms of messing up intended level design and, of course, the frustration for
the player when they collide with something showing one pickup image, but a different kind of
pickup type is added to the inventory!

If a class of GameObject has several related properties or components, which all need to
be changed together, then a good strategy is to use Unity Editor extensions to do all the
associated changes each time a different choice is made from a drop-down menu showing the
defined set of enumerated choices.

In this recipe, we introduce an Editor extension for PickUp components of GameObjects.

Chapter 12

509

Getting ready
This recipe assumes you are starting with project Simple2Dgame_SpaceGirl setup from
the first recipe in Chapter 2, Inventory GUIs. A copy of this Unity project is provided in a folder
named unityProject_spaceGirlMiniGame in the 1362_12_01 folder.

How to do it...
To create an editor extension to allow pickup type (and parameters) to be changed at
design-time via a custom Inspector UI, follow these steps:

1. Start with a new copy of mini-game Simple2Dgame_SpaceGirl.

2. In the Project panel, create a new folder named EditorSprites. Move the
following images from folder Sprites into this new folder: star, healthheart,
icon_key_green_100, icon_key_green_32, icon_star_32, and icon_
heart_32.

3. In the Hierarchy panel, rename GameObject star to be named pickup.

4. Edit the tags, changing tag Star to Pickup. Ensure the pickup GameObject now
has the tag Pickup.

5. Add the following C# script PickUp to GameObject pickup in the Hierarchy:
using UnityEngine;
using System;
using System.Collections;

public class PickUp : MonoBehaviour {
 public enum PickUpType {
 Star, Health, Key
 }

Editor Extensions

510

 [SerializeField]
 public PickUpType type;

 public void SetSprite(Sprite newSprite){
 SpriteRenderer spriteRenderer =
 GetComponent<SpriteRenderer>();
 spriteRenderer.sprite = newSprite;
 }
}

6. In the Project panel, create a new folder named Editor. Inside this new folder,
create a new C# script class named PickUpEditor, with the following code:
using UnityEngine;
using System.Collections;
using System;
using UnityEditor;
using System.Collections.Generic;

[CanEditMultipleObjects]
[CustomEditor(typeof(PickUp))]
public class PickUpEditor : Editor
{
 public Texture iconHealth;
 public Texture iconKey;
 public Texture iconStar;

 public Sprite spriteHealth100;
 public Sprite spriteKey100;
 public Sprite spriteStar100;

 UnityEditor.SerializedProperty pickUpType;

 private Sprite sprite;
 private PickUp pickupObject;

 void OnEnable () {
 iconHealth = AssetDatabase.LoadAssetAtPath("Assets/
EditorSprites/icon_heart_32.png", typeof(Texture)) as Texture;
 iconKey = AssetDatabase.LoadAssetAtPath("Assets/EditorSprites/
icon_key_32.png", typeof(Texture)) as Texture;
 iconStar =
AssetDatabase.LoadAssetAtPath("Assets/EditorSprites/
icon_star_32.png", typeof(Texture)) as Texture;

Chapter 12

511

 spriteHealth100 =
AssetDatabase.LoadAssetAtPath("Assets/EditorSprites/
healthheart.png", typeof(Sprite)) as Sprite;
 spriteKey100 =
AssetDatabase.LoadAssetAtPath("Assets/EditorSprites/
icon_key_100.png", typeof(Sprite)) as Sprite;
 spriteStar100 =
AssetDatabase.LoadAssetAtPath("Assets/EditorSprites/
star.png", typeof(Sprite)) as Sprite;

 pickupObject = (PickUp)target;
 pickUpType = serializedObject.FindProperty ("type");
 }

 public override void OnInspectorGUI()
 {
 serializedObject.Update ();

 string[] pickUpCategories = TypesToStringArray();
 pickUpType.enumValueIndex =
EditorGUILayout.Popup("PickUp TYPE: ",
pickUpType.enumValueIndex, pickUpCategories);

 PickUp.PickUpType type =
(PickUp.PickUpType)pickUpType.enumValueIndex;
 switch(type)
 {
 case PickUp.PickUpType.Health:
 InspectorGUI_HEALTH();
 break;

 case PickUp.PickUpType.Key:
 InspectorGUI_KEY();
 break;

 case PickUp.PickUpType.Star:
 default:
 InspectorGUI_STAR();
 break;
 }

 serializedObject.ApplyModifiedProperties ();
 }

Editor Extensions

512

 private void InspectorGUI_HEALTH()
 {
 GUILayout.BeginHorizontal();
 GUILayout.FlexibleSpace();
 GUILayout.Label(iconHealth);
 GUILayout.Label("HEALTH");
 GUILayout.Label(iconHealth);
 GUILayout.Label("HEALTH");
 GUILayout.Label(iconHealth);
 GUILayout.FlexibleSpace();
 GUILayout.EndHorizontal();

 pickupObject.SetSprite(spriteHealth100);
 }

 private void InspectorGUI_KEY()
 {
 GUILayout.BeginHorizontal();
 GUILayout.FlexibleSpace();
 GUILayout.Label(iconKey);
 GUILayout.Label("KEY");
 GUILayout.Label(iconKey);
 GUILayout.Label("KEY");
 GUILayout.Label(iconKey);
 GUILayout.FlexibleSpace();
 GUILayout.EndHorizontal();

 pickupObject.SetSprite(spriteKey100);
 }

 private void InspectorGUI_STAR()
 {
 GUILayout.BeginHorizontal();
 GUILayout.FlexibleSpace();
 GUILayout.Label(iconStar);
 GUILayout.Label("STAR");
 GUILayout.Label(iconStar);
 GUILayout.Label("STAR");
 GUILayout.Label(iconStar);
 GUILayout.FlexibleSpace();
 GUILayout.EndHorizontal();

 pickupObject.SetSprite(spriteStar100);
 }

Chapter 12

513

 private string[] TypesToStringArray(){
 var pickupValues =
(PickUp.PickUpType[])Enum.GetValues(typeof
(PickUp.PickUpType));

 List<string> stringList = new List<string>();

 foreach(PickUp.PickUpType pickupValue in pickupValues){
 string stringName = pickupValue.ToString();
 stringList.Add(stringName);
 }

 return stringList.ToArray();
 }
}

7. In the Inspector panel, select GameObject pickup and choose different values of the
drop-down menu PickUp Type. You should see corresponding changes in the image
and icons in the Inspector for the Pick Up (Script) component (three icons with the
name of the type in between). The Sprite property of the Sprite Renderer component
for this GameObject should change. Also, in the Scene panel, you'll see the image in
the scene change to the appropriate image for the pickup type you have chosen.

How it works...
Our script class PickUp has the enum PickUpType with the three values: Star, Health,
and Key. Also, there is the variable type, storing the type of the parent GameObject. Finally,
there is a SetSprite(…) method that sets the Sprite Renderer component of the parent
GameObject to be set to the provided Sprite parameter. It is this method that is called from
the editor script each time the pickup type is changed from the drop-down menu (with the
corresponding sprite for the new type being passed).

Editor Extensions

514

The vast majority of the work for this recipe is the responsibility of the script class
PickUpEditor. While there is a lot in this script, its work is relatively straightforward: for each
frame, via method OnInspectorGUI(), a dropdown list of PickUpType values is presented
to the user. Based on the value selected from this drop-down list, one of three methods is
executed: InspectorGUI_HEALTH(), InspectorGUI_KEY(), InspectorGUI_STAR().
Each of these methods displays three icons and the name of the type in the Inspector beneath
the drop-down menu and ends by calling the SetSprite(…) method of the GameObject being
edited in the Inspector to update the Sprite Renderer component of the parent GameObject
with the appropriate sprite.

The C# attribute [CustomEditor(typeof(PickUp))] appearing before our class is
declared, tells Unity to use this special editor script to display component properties in the
Inspector panel for Pick Up (Script) components of GameObjects, rather than Unity's default
Inspector which displays public variables of such scripted components.

Before and after its main work, the OnInspectorGUI() method first ensures that
any variables relating to the object being edited in the Inspector have been updated —
serializedObject.Update(). The last statement of this method correspondingly ensures
that any changes to variables in the editor script have been copied back to the GameObject
being edited—serializedObject.ApplyModifiedProperties().

The OnEnable() method of script class PickUpEditor loads the three small icons
(for display in the Inspector) and the three larger sprite images (to update the Sprite
Renderer for display in the Scene/Game panels). The pickupObject variable is set to
be a reference to the PickUp scripted component, allowing us to call the SetSprite(…)
method. The pickUpType variable is set to be linked to the type variable of the PickUp
scripted component whose special Inspector editor view makes this script possible—
serializedObject.FindProperty ("type").

There's more...
Here are some details you don't want to miss.

Offer the custom editing of pickup parameters via Inspector
Many pickups have additional properties, rather than simply being an item being carried.
For example, a health pickup may add health "points" to the player's character, a coin
pickup may add money "points" to the characters bank balance, and so on. So, let's add
an integer points variable to our PickUp class and offer the user the ability to easily
edit this points value via a GUI slider in our customer Inspector editor.

Chapter 12

515

To add an editable points property to our PickUp objects, follow these steps:

1. Add the following extra line into C# script PickUp to create our new integer
points variable:
public int points;

2. Add the following extra line into C# script PickUpEditor to work with our new
integer points variable:
UnityEditor.SerializedProperty points;

3. Add the following extra line into the OnEnable() method in C# script PickUpEditor
to associate our new points variable with its corresponding value in the PickUp
scripted component of the GameObject being edited:
void OnEnable () {
 points = serializedObject.FindProperty ("points");
 pickUpType = serializedObject.FindProperty ("type");
 // rest of method as before…

4. Now we can add an extra line into each GUI method for the different PickUp types.
For example, we can add a statement to display an IntSlider to the user to be able to
see and modify the points value for a Health PickUp object. We add a new statement
at the end of the InspectorGUI_HEALTH()method in C# script PickUpEditor to
display a modifiable IntSlider representing our new points variable as follows:
private void InspectorGUI_HEALTH(){
 // beginning of method just as before…

 pickupObject.SetSprite(spriteHealth100);

// now display Int Slider for points
 points.intValue = EditorGUILayout.IntSlider
("Health points", points.intValue, 0, 100);
}

Editor Extensions

516

We provide four parameters to the IntSlider(…) method. The first is the text label the
user will see next to the slider. The second is the initial value the slider displays. The last two
are the maximum and minimum values. In our example, we are permitting values from 0 to
100, but if health pickups only offer one, two, or three health points, then we'd just call with
EditorGUILayout.IntSlider ("Health points", points.intValue, 1, 5).
This method returns a new integer value based on where the slider has been positioned,
and this new value is stored back into the integer value part of our SerializedProperty
variable points.

Note that the loading and saving of values from the scripted component in the GameObject and
our editor script is all part of the work undertaken by our calls to the Update() method and the
ApplyModifiedProperties() method on the serialized object in the OnInspectorGUI()
method.

Note that since points may not have any meaning for some pickups, for example, keys, then
we simply would not display any slider for the GUI Inspector editor when the user is editing
PickUp objects of that type.

Offer a drop-down list of tags for key-pickup to fit via Inspector
While the concept of "points" may have no meaning for a key pickup, the concept of the
type of lock that a given key fits is certainly something we may wish to implement in a game.
Since Unity offers us a defined (and editable) list of string tags for any GameObject, often it is
sufficient, and straightforward, to represent the type of lock or door corresponding to a key via
its tag. For example, a green key might fit all objects tagged LockGreen and so on.

Chapter 12

517

Therefore, it is very useful to be able to offer a custom Inspector editor for a string property
of key pickups that stores the tag of the lock(s) the key can open. This task combines several
actions, including using C# to retrieve an array of tags from the Unity editor, then the building
and offering of a drop-down list of these tags to the user, with the current value already
selected in this list.

To add a selectable list of strings for the tag for lock(s) that a key fits, follow these steps:

1. Add the following extra line into C# Script PickUp to create our new integer
fitsLockTag variable:
public string fitsLockTag;

2. Add the following extra line into C# script PickUpEditor to work with our new
integer fitsLockTag variable:
UnityEditor.SerializedProperty fitsLockTag;

3. Add the following extra line into the OnEnable()method in C# script PickUpEditor
to associate our new fitsLockTag variable with its corresponding value in the
PickUp scripted component of the GameObject being edited:
void OnEnable () {
 fitsLockTag =
serializedObject.FindProperty ("fitsLockTag");
 points = serializedObject.FindProperty ("points");
 pickUpType = serializedObject.FindProperty ("type");
 // rest of method as before…

4. Now we need to add some extra lines of code into the GUI method for key PickUps.
We need to add several statements to the end of method InspectorGUI_KEY()
in C# script PickUpEditor to set up and display a selectable popup drop-down list
representing our new fitsLockTag variable as follows. Replace the InspectorGUI_
KEY() method with the following code:
private void InspectorGUI_KEY() {
 GUILayout.BeginHorizontal();
 GUILayout.FlexibleSpace();
 GUILayout.Label(iconKey);
 GUILayout.Label("KEY");
 GUILayout.Label(iconKey);
 GUILayout.Label("KEY");
 GUILayout.Label(iconKey);
 GUILayout.FlexibleSpace();
 GUILayout.EndHorizontal();

 pickupObject.SetSprite(spriteKey100);

 string[] tags =
UnityEditorInternal.InternalEditorUtility.tags;

Editor Extensions

518

 Array.Sort(tags);
 int selectedTagIndex =
Array.BinarySearch(tags, fitsLockTag.stringValue);
 if(selectedTagIndex < 0) selectedTagIndex = 0;
 selectedTagIndex =
EditorGUILayout.Popup("Tag of door key fits: ",
selectedTagIndex, tags);

 fitsLockTag.stringValue = tags[selectedTagIndex];
}

We've added several statements to the end of this method. First tags, an array of strings,
is created (and sorted), containing the list of tags currently available in the Unity editor for
the current game. We then attempt to find the location in this array of the current value of
fitsLockTag — we can use the BinarySearch(…) method of built-in script class Array
because we have alphabetically sorted our array (which also makes it easier for the user to
navigate). If the string in fitsLockTag cannot be found in array tags, then the first item
will be selected by default (index 0).

The user is then shown the drop-down list via the GUILayout method EditorGUILayout.
Popup(…), and this method returns the index of whichever item is selected. The selected
index is stored into selectedTagIndex, and the last statement in the method extracts
the corresponding string and stores that string into the fitsLockTag variable.

Note: Rather than displaying all possible tags, a further refinement
might remove all items from array 'tags' that do not have the prefix
'Lock'. So the user is only presented with tags such as 'LockBlue' and
'LockGreen', and so on.

Logic to open doors with keys based on fitsLockTag
In our player collision logic, we can now search through our inventory to see if any key items fit
the lock we have collided with. For example, if a green door was collided with, and the player
was carrying a key that could open such doors, then that item should be removed from the
inventory List<> and the door should be opened.

To implement this, you would need to add an if test inside the OnTriggerEnter() method
to detected collision with the item tagged Door, and then logic to attempt to open the door,
and, if unsuccessful, do the appropriate action (for example, play sound) to inform the player
they cannot open the door yet (we'll assume we have written a door animation controller that
plays the appropriate animation and sounds and when a door is to be opened):

if("Door" == hitCollider.tag){
 if(!OpenDoor(hitCollider.gameObject))
 DoorNotOpenedAction();
}

Chapter 12

519

The OpenDoor() method would need to identify which item (if any) in the inventory can open
such a door, and, if found, then that item should be removed from the List<> and the door
should be opened by the appropriate method:

private bool OpenDoor(GameObject doorGO){
 // search for key to open the tag of doorGO
 int colorKeyIndex = FindItemIndex(doorGO.tag);
 if(colorKeyIndex > -1){
 // remove key item from inventory List<>
 inventory.RemoveAt(colorKeyIndex);

 // now open the door...
 DoorAnimationController doorAnimationController =
doorGO.GetComponent<>(DoorAnimationController);
 doorAnimationController.OpenDoor();

 return true;
 }

 return false;
}

The following is the code for a method to find the inventory list key item fitting a door tag:

private int FindItemIndex(string doorTag){
 for (int i = 0; i < inventory.Count; i++){
 PickUp item = inventory[i];
 if((PickUp.PickUpType.Key == item.type) &&
 (item.fitsLockTag == doorTag))
 return i;
 }

 // not found
return -1;
}

The need to add [SerializeField] for private properties
Note that if we wished to create editor extensions to work with private variables, then we'd
need to explicitly add [SerializeField] in the line immediately before the variable to be
changed by the editor script. Public variables are serialized by default in Unity, so this was not
required for our public type variable in script class PickUp, although it's good practice to flag
ALL variables that are changeable via an Editor Extension in this way.

Editor Extensions

520

Learn more from the Unity documentation
Unity provides documentation pages about editor scripts at http://docs.unity3d.com/
ScriptReference/Editor.html.

An editor extension to add 100 randomly
located copies of a prefab with one
menu click

Sometimes we want to create "lots" of pickups, randomly in our scene. Rather than doing
this by hand, it is possible to add a custom menu and item to the Unity editor, which, when
selected, will execute a script. In this recipe, we create a menu item that calls a script to
create 100 randomly positioned star pickup prefabs in the Scene.

Getting ready
This recipe assumes you are starting with the project Simple2Dgame_SpaceGirl setup
from the first recipe in this chapter.

How to do it...
To create an editor extension to add 100 randomly located copies of a prefab with one menu
click, follow these steps:

1. Start with a new copy of mini-game Simple2Dgame_SpaceGirl.

2. In the Project panel, create a new folder named Prefabs. Inside this new folder,
create a new empty prefab named prefab_star. Populate this prefab by dragging
GameObject star from the Hierarchy panel over prefab_star in the Project
panel. The prefab should now turn blue and have a copy of all of GameObject star's
properties and components.

3. Delete GameObject star from the Hierarchy.

4. In the Project panel, create a new folder named Editor. Inside this new folder,
create a new C# script class named MyGreatGameEditor, with the following code:
using UnityEngine;
using UnityEditor;
using System.Collections;
using System;

http://docs.unity3d.com/ScriptReference/Editor.html
http://docs.unity3d.com/ScriptReference/Editor.html

Chapter 12

521

public class MyGreatGameEditor : MonoBehaviour {
 const float X_MAX = 10f;
 const float Y_MAX = 10f;

 static GameObject starPrefab;

 [MenuItem("My-Great-Game/Make 100 stars")]
 static void PlacePrefabs(){
 string assetPath = "Assets/Prefabs/prefab_star.prefab";
 starPrefab = (GameObject)AssetDatabase.
LoadMainAssetAtPath(assetPath);

 int total = 100;
 for(int i = 0; i < total; i++){
 CreateRandomInstance();
 }
 }

 static void CreateRandomInstance(){
 float x = UnityEngine.Random.Range(-X_MAX, X_MAX);
 float y = UnityEngine.Random.Range(-Y_MAX, Y_MAX);
 float z = 0;
 Vector3 randomPosition = new Vector3(x,y,z);

 Instantiate(starPrefab, randomPosition,
Quaternion.identity);
 }
}

5. After 20 to 30 seconds, depending on the speed of your computer, you should
now see a new menu appear, My Great Game, with a single menu item, Make 100
stars. Chose this menu item and, as if by magic, you should now see 100 new
prefab_star(Clone) GameObjects appear in the scene!

Editor Extensions

522

How it works...
The core aim of this recipe is to add a new menu, containing a single menu item that will
execute the action we desire. C# attribute [MenuItem("<menuName>/<menuItemName>")]
declares the menu name and the menu item name, and Unity will execute the static method
that follows in the code listing, each time the menu item is selected by the user.

In this recipe, the [MenuItem("My-Great-Game/Make 100 stars")] statement declares
the menu name as My-Great-Game and the menu item as Make 100 stars. The method
immediately following this attribute is the PlacePrefabs() method. When this method is
executed, it makes the starPrefab variable become a reference to the prefab found via the
Assets/Prefabs/prefab_star.prefab path. Then, a for loop is executed 100 times,
each time calling the CreateRandomInstance() method.

The CreateRandomInstance() method creates a Vector3 randomPosition variable,
making use of X_MAX and Y_MAX constants. The Instantiate(...) built-in method is then
used to create a new GameObject in the scene, making a clone of the prefab and locating it at
the position defined by randomPosition.

There's more...
Some details you don't want to miss:

Child each new GameObject to a single parent, to avoid filling up
the Hierarchy with 100s of new objects
Rather than having hundreds of new object clones fill up our Hierarchy panel, a good way
to keep things tidy is to have an empty "parent" GameObject and child a collection of related
GameObjects to it. Let's have a GameObject in the Hierarchy named Star-container and child
all the new stars to this object.

Chapter 12

523

We need a variable that will be a reference to our container object, starContainerGO.
We also need a new method, CreateStarContainerGO(), which will find a reference to
GameObject star-container, if such an object already exists it is deleted, and then the method
will create a new empty GameObject and give it this name. Add the following variable and
method to our script class:

static GameObject starContainerGO;

static void CreateStarContainerGO() {
 string containerName = "Star-container";
 starContainerGO = GameObject.Find(containerName);
 if (null != starContainerGO)
 DestroyImmediate(starContainerGO);
 starContainerGO = new GameObject(containerName);
}

Before we create the prefab clones, we need to first ensure we have created our star
container GameObject. So we need to call our new method as the first thing we do when
the PlacePrefabs() method is executed, so add a statement to call this method at the
beginning of the PlacePrefabs() method:

static void PlacePrefabs(){
 CreateStarContainerGO();

 // rest of method as before ...
}

Now we need to modify the CreateRandomInstance() method so that it gets a reference to
the new GameObject it has just created and can then child this new object to our star-container
GameObject variable starContainerGO. Modify the CreateRandomInstance() method so
that it looks as follows:

static void CreateRandomInstance() {
 float x = UnityEngine.Random.Range(-X_MAX, X_MAX);
 float y = UnityEngine.Random.Range(-Y_MAX, Y_MAX);
 float z = 0;
 Vector3 randomPosition = new Vector3(x,y,z);

 GameObject newStarGO = (GameObject)Instantiate(starPrefab,
randomPosition, Quaternion.identity);
 newStarGO.transform.parent = starContainerGO.transform;
}

Editor Extensions

524

A progress bar to display proportion
completed of Editor extension processing

If an Editor task is going to take more than half a second or so, then we should indicate
progress complete/remaining to the user via a progress bar so that they understand that
something is actually happening and the application has not crashed and frozen.

Getting ready
This recipe adds to the previous one, so make a copy of that project folder and do your work
for this recipe with that copy.

How to do it...
To add a progress bar during the loop (and then remove it after the loop is complete), replace
the PlacePrefabs() method with the following code:

static void PlacePrefabs(){
 string assetPath = "Assets/Prefabs/prefab_star.prefab";
 starPrefab = (GameObject)AssetDatabase.
LoadMainAssetAtPath(assetPath);

 int total = 100;
 for(int i = 0; i < total; i++){
 CreateRandomInstance();
 EditorUtility.DisplayProgressBar("Creating your starfield",
i + "%", i/100f);
 }

 EditorUtility.ClearProgressBar();
}

Chapter 12

525

How it works...
As can be seen, inside the for loop, we call the EditorUtility.
DisplayProgressBar(...) method, passing three parameters. The first is a string title for
the progress bar dialog window, the second is a string to show below the bar itself (usually a
percentage is sufficient), and the final parameter is a value between 0.0 and 1.0, indicating
the percentage complete to be displayed.

Since we have loop variable i that is a number from 1 to 100, we can display this integer
followed by a percentage sign for our second parameter and just divide this number by 100
to get the decimal value needed to specify how much of the progress bar should be shown as
completed. If the loop were running for some other number, we'd just divide the loop counter
by the loop total to get our decimal progress value. Finally, after the loop has finished, we
remove the progress bar with statement EditorUtility.ClearProgressBar().

An editor extension to have an object-creator
GameObject, with buttons to instantiate
different pickups at cross-hair object
location in scene

If a level designer wishes to place each pickup carefully "by hand", we can still make this
easier than having to drag copies of prefabs manually from the Projects panel. In this recipe,
we provide a "cross-hairs" GameObject, with buttons in the Inspector allowing the game
designer to create instances of three different kinds of prefab at precise locations by clicking
the appropriate button when the center of the cross-hairs is at the desired location.

A Unity Editor extension is at the heart of this recipe and illustrates how such extensions can
allow less technical members of a game development team to take an active role in level
creation within the Unity Editor.

Editor Extensions

526

Getting ready
This recipe assumes you are starting with the project Simple2Dgame_SpaceGirl setup
from the first recipe in Chapter 2, Inventory GUIs.

For this recipe, we have prepared the cross-hairs image you need in a folder named Sprites
in the 1362_12_04 folder.

How to do it...
To create an object-creator GameObject, follow these steps:

1. Start with a new copy of mini-game Simple2Dgame_SpaceGirl.

2. In the Project panel, rename GameObject star as pickup.

3. In the Project panel, create a new folder named Prefabs. Inside this new folder,
create three new empty prefabs named star, heart, and key.

4. Populate the star prefab by dragging GameObject pickup from the Hierarchy panel
over star in the Project panel. The prefab should now turn blue and have a copy of
all of the star GameObject's properties and components.

5. Add a new tag Heart in the Inspector. Select GameObject pickup in the Hierarchy
panel and assign it the tag Heart. Also, drag from the Project panel (folder
Sprites) the healthheart image into the Sprite property of GameObject pickup so
that the player sees the heart image on screen for this pickup item.

6. Populate the heart prefab by dragging GameObject pickup from the Hierarchy panel
over heart in the Prefabs folder in the Project panel. The prefab should now turn
blue and have a copy of all of the pickup GameObject's properties and components.

7. Add a new tag Key in the Inspector. Select GameObject's pickup in the Hierarchy
panel and assign it this tag Key. Also, drag from the Project panel (folder Sprites)
image icon_key_green_100 into the Sprite property of GameObject's pickup so that
the player sees the key image on screen for this pickup item.

8. Populate the key prefab by dragging GameObject pickup from the Hierarchy panel
over key in the Prefabs folder in the Project panel. The prefab should now turn
blue and have a copy of all of the pickup GameObject's properties and components.

9. Delete GameObject's pickup from the Hierarchy.

10. In the Project panel, create a new folder named Editor. Inside this new folder,
create a new C# script class named ObjectBuilderEditor, with the following
code:
using UnityEngine;
using System.Collections;
using UnityEditor;

Chapter 12

527

[CustomEditor(typeof(ObjectBuilderScript))]
public class ObjectBuilderEditor : Editor{
 private Texture iconStar;
 private Texture iconHeart;
 private Texture iconKey;

 private GameObject prefabHeart;
 private GameObject prefabStar;
 private GameObject prefabKey;

 void OnEnable () {
 iconStar = Resources.LoadAssetAtPath("Assets/EditorSprites/
icon_star_32.png", typeof(Texture)) as Texture;
 iconHeart =
Resources.LoadAssetAtPath("Assets/EditorSprites/
icon_heart_32.png", typeof(Texture)) as Texture;
 iconKey = Resources.LoadAssetAtPath("Assets/EditorSprites/
icon_key_green_32.png", typeof(Texture)) as Texture;

 prefabStar =
Resources.LoadAssetAtPath("Assets/Prefabs/star.prefab",
typeof(GameObject)) as GameObject;
 prefabHeart =
Resources.LoadAssetAtPath("Assets/Prefabs/heart.prefab",
typeof(GameObject)) as GameObject;
 prefabKey =
Resources.LoadAssetAtPath("Assets/Prefabs/key.prefab",
typeof(GameObject)) as GameObject;
 }

 public override void OnInspectorGUI(){
 ObjectBuilderScript myScript =
(ObjectBuilderScript)target;

 GUILayout.Label("");
 GUILayout.BeginHorizontal();
 GUILayout.FlexibleSpace();
 GUILayout.Label("Click button to create instance of
prefab");
 GUILayout.FlexibleSpace();
 GUILayout.EndHorizontal();
 GUILayout.Label("");

 GUILayout.BeginHorizontal();
 GUILayout.FlexibleSpace();

Editor Extensions

528

 if(GUILayout.Button(iconStar)) myScript.
AddObjectToScene(prefabStar);
 GUILayout.FlexibleSpace();
 if(GUILayout.Button(iconHeart)) myScript.
AddObjectToScene(prefabHeart);
 GUILayout.FlexibleSpace();
 if(GUILayout.Button(iconKey)) myScript.
AddObjectToScene(prefabKey);
 GUILayout.FlexibleSpace();
 GUILayout.EndHorizontal();

 }
}

11. Our Editor script is expecting to find the three icons in a folder named EditorSprites,
so let's do this. First create a new folder named EditorSprites. Next drag the three
32 x 32 pixel icons from the Sprites folder into this new EditorSprites folder. Our
Editor script should now be able to load these icons for image-based buttons that it will
be drawing in the Inspector, from which the user chooses which pickup prefab object to
clone into the scene.

12. From the Project panel, drag sprite cross_hairs.fw into the Scene. Rename this
gameObject object-creator-cross-hairs, and in its Sprite Renderer
component in the Inspector, set Sorting Layer to Foreground.

13. Attach the following C# script to GameObject object-creator-cross-hairs:
using UnityEngine;
using System.Collections;

public class ObjectBuilderScript : MonoBehaviour {
 void Awake(){
 gameObject.SetActive(false);
 }

 public void AddObjectToScene(GameObject
prefabToCreateInScene){

Chapter 12

529

 GameObject newGO =
(GameObject)Instantiate(prefabToCreateInScene,
transform.position, Quaternion.identity);
 newGO.name = prefabToCreateInScene.name;
 }
}

14. Select the Rect Tool (shortcut key T), and as you drag gameObject object-creator-
cross-hairs and click on the desired icon in the Inspector, new pickup GameObjects
will be added to the scene's Hierarchy.

How it works...
The script class ObjectBuilderScript has just two methods, one of which has just
one statement—the Awake() method simply makes this GameObject become inactive
when the game is running (since we don't want the user to see our cross-hairs created tool
during gameplay). The AddObjectToScene(…) method receives a reference to a prefab
as a parameter and instantiates a new clone of the prefab in the scene at the location of
GameObject object-creator-cross-hairs at that point in time.

Script class ObjectBuilderEditor has a C# attribute [CustomEditor(typeof(Objec
tBuilderScript))] immediately before the class is declared, telling Unity to use this class
to control how ObjectBuilderScript GameObject properties and components are shown
to the user in the Inspector.

There are six variables, three textures for the icons to form the buttons in the Inspector,
and three GameObject references to the prefabs of which instances will be created. The
OnEnable() method assigns values to these six variables using the built-in method
Resources.LoadAssetAtPath(), retrieving the icons from the Project folder
EditorSprites and getting references to the prefabs in the Project folder Prefabs.

The OnInspectorGUI() method has a variable myScript, which is set to be a reference
to the instance of scripted component ObjectBuilderScript in GameObject object-
creator-cross-hairs (so we can call its method when a prefab has been chosen). The
method then displays a mixture of empty text Labels (to get some vertical spacing) and
FlexibleSpace (to get some horizontal spacing and centering) and displays three buttons
to the user, with icons of star, heart, and key. The scripted GUI technique for Unity custom
Inspector GUIs wraps an if statement around each button, and on the frame the user
clicks the button, the statement block of the if statement will be executed. When any of the
three buttons is clicked, a call is made to AddObjectToScene(…) of scripted component
ObjectBuilderScript, passing the prefab corresponding to the button that was clicked.

Editor Extensions

530

Conclusion
In this chapter, we introduced recipes demonstrating some Unity Editor extension scripts,
illustrating how we can make things easier, less script based, and less prone to errors,
by limiting and controlling the properties of objects and how they are selected or changed
via the Inspector.

The concept of serialization was raised in the Editor extension recipes, whereby we need to
remember that when we are editing item properties in the Inspector, each change needs to be
saved to disk so that the updated property is correct when we next use or edit that item. This
is achieved in the OnInspectorGUI() method by first calling the serializedObject.
Update() method, and after all changes have been made in the Inspector, finally calling the
serializedObject.ApplyModifiedProperties() method. Some sources for more
information and examples about custom Editor extensions include:

 f For more about custom Unity Editors in Ryan Meier's blog, refer to
http://www.ryan-meier.com/blog/?p=72

 f For more custom Unity Editor scripts/tutorials, including grids and color pickers,
refer to http://code.tutsplus.com/tutorials/how-to-add-your-own-
tools-to-unitys-editor--active-10047

http://www.ryan-meier.com/blog/?p=72
http://code.tutsplus.com/tutorials/how-to-add-your-own-tools-to-unitys-editor--active-10047
http://code.tutsplus.com/tutorials/how-to-add-your-own-tools-to-unitys-editor--active-10047

531

Index
Symbols
2D GameObject

player control 311
2D mini-game. See SpaceGirl game
2D sprite controlled game

creating 312-314
3D cube controlled game

creating 316-319
3D GameObject

player control 315
3D sounds 352
3D Studio Max

URL 502

A
AccelRocket() function 358
acoustic environments

Audio Reverb Zone component,
attaching 361

simulating, with Reverb Zones 358-361
active objects

reducing, by making objects
inactive 465-468

Add Event feature 295
AddObjectToScene() method 529
Albedo map 143, 144
alignment 349
Allegorithmic

URL 142
Alpha Cutoff 162
analogue clock

displaying, URL 11
animated characters

rigid props, adding 291-294

animation clips
about 264
creating, from sprite sheet

sequences 136-138
Animation Events

about 295-297
used, for throwing object 295-298

Animation Layers
URL 280

Animation panel 295
animations

mixing, with Layers and Masks 273-280
animation speed

audio pitch, matching to 353-357
animation states

organizing, into Sub-State Machines 280-285
Animation view

URL 129
Animator Controller

about 264
URL 264

Animator system 259
Apache 397
Artificial Intelligence (AI)

about 310
flocking 350

Asset Store
URL 258

audio clip
linking, with automatic destruction

of object 363-366
preventing, from restart 361-363

Audio Listener 352

532

Audio Mixers
Audio Production, playing with 374
used, for adding volume control 366-374

audio pitch
Animation/Sound Ratio, changing 358
functions, accessing from other scripts 358
matching, to animation speed 353-358

Audio Source component 352
Avatar Body Masks

URL 280
Avatar skeleton

configuring 259-264
Awake() method 421

B
Basic Controller component 285
Bitbucket

URL 427
Bitmap2Material

URL 161, 179
Blender

URL 502
Blend Trees

URL 273
used, for moving character 265-272

BuildMaze() method 421

C
CalculateBlipPosition(…) method 47, 48
cameras

customizing 181, 182
URL 182

Canvas render modes
Screen Space - Camera 5
Screen Space - Overlay 5
World Space 5

CaptureScreenshot() function 412
character

body parts, animating 122-129
moving, with Blend Trees 265
moving, with Root Motion 265-273
Ragdoll physics, applying 298-302
torso, rotating 303-307

character controller
transforming, via script 286-291

CheckDeath() method 460
checkpoint 326
childing 330
Chorus 374
cloudy outdoor environment

Point Light Cookies, creating 219
simulating, with cookie textures 215-219
simulating, with lights 215-219
Spot Light cookies, creating 219

cohesion 349
component lookups

AverageDistance calculation 489, 490
cache array of Respawn object

transforms 490, 491
Cache array of sphere Vector3

positions 494-496
Cache Player's Vector3 position 492, 493
cache reference to Player transform 491, 492
cache reference to SimpleMath

component 493, 494
caching, for code performance

improvement 486-489
computations

spreading, over several frames with
coroutines 475-477

Unity log text files, retrieving 477, 478
Controller 264, 355
coroutines

about 323, 398, 473
URL 475
used, for spreading computations over

several frames 474-477
using 474

countdown timer
displaying, graphically with UI Slider 35-38

CrazyBum
URL 160

CreatePrefabIInstance (…) method 421
CreateRandomInstance() method 522
CreateRow(…) method 421
Cubemap 222
custom mouse cursor images

for mouse over UI controls 54, 55
setting 52-54

custom Reflection map
adding, to scene 220-222
coordinates, mapping 223

533

maximum size 223
sharp reflections 223

Cutout 162

D
delegates and events

about 468
SendMessage() method, avoiding 468-472
URL 472
used, for improving efficiency 468-472

design-time 507
Detail maps

adding, to material 168-172
Digital Audio Workstations (D.A.W) 352
digital clock

analogue clock animation, with
Unity tutorial 11

displaying 8-11
digital countdown timer

displaying 11-13
directed graph (di-graph) 342
Directional Light

used, for setting up environment 237-241
Distortion 374
Distributed Version Control Systems (DVCS)

about 393
URL 427

Do-It-Yourself (DIY)
about 478
performance profiling, for identifying

performance bottlenecks 484-486
DrawBlip() method 48
Draw Call Batching

URL 502
Ducking

about 383
applying, to soundtrack 383
used, for balancing in-game audio 383-389

dynamic batching
about 500
implementing 501

E
Editor extension

[SerializeField], adding 519
about 507

completed progress, displaying with
progress bar 524, 525

creating, for changing pickup type 508-514
drop-down list of tags, adding to

key-pickup 516-518
keys based on fitsLockTag, using 518
new GameObject, childing to single

parent 522, 523
object-creator GameObject,

creating 525-530
pickup parameters, custom editing 514-516
references 530
Unity documentation, URL 520
used, for adding 100 randomly located copies

of prefab 520-522
Elegant Themes 394
Enlighten 211
environment

setting up, with Directional Light 237-240
setting up, with Procedural Skybox 237-240

external resource files
cross-platform problems, avoiding with

Path.Combine() method 402
loading, by file downloading from

Internet 397, 398
loading, by manual files storage 400-402
loading, with Unity Default

Resources 394-396
resource contents 400
text file, downloading from Web 399
Texture, converting to Sprite 399
WWW class 400

F
fading image

displaying 14-16
Field of View (FOV) 181
FindAndDisplayBlipsForTag() method 46
flags 78
Flange 374
FleeFromTarget() method 334
Frames Per Second (FPS)

about 478-480
processing, reduction by runtime display

turn off 480
URL 478

534

Freepik 394
Fungus open source dialog system

about 49
URL 49, 52
used, for creating UIs 49-52

Fuse 258

G
game

audio, optimization 503
components 434, 435
pausing 435-439
preventing, from running on unknown

servers 444-446
QualitySettings 439
redistribution, allowing with domains 446
security, improving with full URLs 446
snapshots, saving 409-411

Game Managers
references 506

geometric primitive colliders 504
GitHub hosting

URL 422
used, for managing Unity project

code 421-427
Git version control

URLs 428
used, for managing Unity project

code 421-427
Global Illumination

about 211
URL 211

Google 393
GUI 374

H
Heightmap

about 156, 160
URL 159

Hello World text message
displaying 6
substrings, styling with Rich Text 8
working 8

Horizontal Axis 271

I
idle animation

configuring 259-264
image

displaying 18, 19
in-game surveillance camera

creating 207-210
Inspector window

using 392
Interaction UI controls 3
interactive UI Slider value

displaying 32-35
inventory items

collection of different items 67
collection of related items 66
continuous item 66
single items 66
two or more of same item 66

K
KeepWithinMinMaxRectangle() method 319
KeyboardMovement() method 319

L
laser aim

creating, with Line Renderer 223-230
creating, with Projector 223-230

Layers and Masks
used, for mixing animations 273-280

leaderboard
full data, extracting as XML 415
securing, with secret game codes 415, 416
setting up, with PHP/MySQL 412-414

Level Of Detail groups. See LOD groups
Lighting window

about 214
URL 214

Lightmaps
URL 214
used, for lightining simple scene 242-255

Light Probes
about 211
URL 214, 255
used, for lightining simple scene 241-254

535

lights
about 212
area light 212
baked modes 212
color property 212
directional light 212
emissive materials 213
environment lighting 212
intensity 212
Lighting window 214
Lightmaps 214
Light Probes 214
mixed modes 212
point light 212
Projector 213
range property 212
realtime modes 212
shadow type 212
sources, creating 211
spot light 212
types, URL 212
used, for simulating cloudy outdoor

environment 215-219
Line Renderer

used, for creating laser aim 223-230
LOD groups

LOD renderers adding 500
LOD transitions, fading 500
used, for improving performance 496-499

low coupling 110

M
Magic Wand Tool 161
Main Camera 352
Mari

URL 180
material

color emission, adding 161-165
creating, with Standard Shader

(Specular Setup) 145-152
Detail maps, adding 168-172
highlighting, at mouse over 166, 167
light, emitting over objects 165
Normal maps, adding 156-161

semi-transparent objects issues,
avoiding 165

texture maps, using with Transparent
Mode 165

transparency, adding 161-165
maximum and minimum FPS

calculating 478-480
recording 478, 479

Mecanim
about 119, 258, 295
URL 273
using 258

Metallic workflow 141
methods

implementing, at regular intervals
independent of frame rate 473, 474

mini-map
adapting, to other styles 207
displaying 200-206
narrower area, covering 207
orientation, modifying 207
wider area, covering 207

Mixamo
about 258
URL 258

Model-View-Controller (MVC) 78
Motion Blur

adding 443
URL 443

Move state 285
multiple cameras

single-enabled camera, using 191
switching between 188-190
switch, triggering from events 191

multiple pickups, of different objects
alphabetic sorting of items, implementing 97
displaying, as list of text 93-96
displaying, as text totals 98-101
icons, revealing, by changing tiled

image size 90-92
multiple pickups, of same object

displaying, with multiple status icons 86-90
displaying, with text totals 84-86

Multipurpose Camera Rig 182
mutually-exclusive radio buttons

implementing, with Toggle Group 61, 62

536

N
NavMeshAgent

about 328
destination, updating to flee away from

Player's current location 333-335
destination, updating to Player's current

location 332, 333
mini point-and-click game,

creating 335, 336
NavMeshes

using, for waypoints 341
nDo

URL 160
NetHack

about 416
URL 417

Non-Player Character (NPC) 309, 460
NormalisedPosition() method 46
normalized value 47
Normal maps

about 156
applying, to material 156-160
resources 161

NPC NavMeshAgent
instructing, to flee from destination 328-332
instructing, to follow waypoints in

sequence 336-340

O
object-creator GameObject

creating 525-529
object group movement

controlling, through flocking 344-349
object relative location

CalculateBlipPosition() method,
using 47, 48

DrawBlip() method, using 48
FindAndDisplayBlipsForTag() method,

using 46
indicating, with radar display 39-45
NormalisedPosition() method, using 47
Start() method, using 45
Update() method, using 46

objects
destroying, after specified time 458, 459
disabling, after OnTrigger() 463, 464

disabling, for reducing computer processing
workload requirements 460-462

reducing, by destroying objects at
runtime 457-459

viewing, in Scene panel 463
observer design pattern 468
OnDrawGizmos() method 315, 319
OnEnable() method 514
OnInspectorGUI() method 514
on/off UI Toggle

displaying 59, 60
OnTriggerEnter2D() method 77, 86
OpenDoor() method 519
optimization

references, URLs 505
Orthographic mode 181

P
Paladin Studios

URL 502
panel

about 2
depths, modifying via buttons 28-31
images, organizing 28-30

performance bottlenecks
identifying, with Do-It-Yourself performance

profiling 484-486
identifying, with performance

Profiler 481-483
performance Profiler

URL 484
used, for identifying performance

bottlenecks 481-483
perspective 3D text message

displaying 16, 17
references, URL 18
text, making to crawl 18

Photoshop plug-in
URL 502

PHP/MySQL
actions 414
used, for setting up leaderboard 412-414

Physically-Based Rendering
about 141, 179
references 142, 179

Physically-Based Shaders 141

537

physics engine
optimization 504

Picol 394
picture-in-picture effect

creating 183-187
creating, proportional to screen's size 187
position, modifying 187
preventing, from updating on

every frame 187
player data

loading, with PlayerPrefs 406-408
loading, with static properties 403-405
references 406
saving, with PlayerPrefs 406-408
saving, with static properties 403-405
score, hiding 406

PlayerPrefs class
URL 408
used, for loading player data 406-409
used, for saving player data 406-409
using 393

PNG format 142
Point Light Cookies

creating 219
premature optimization

references 506
ProBuilder 2.0 242
Procedural Skybox

about 211
atmosphere thickness parameter 241
exposure parameter 241
ground parameter 241
sky tint parameter 241
sun size parameter 240
used, for setting up environment 237-240

ProCore
URL 242

progress bar
used, for displaying Editor extension

progress 524, 525
Projector

URL 213
used, for creating laser aim 223-230

ProTools 352
PSD format 142
publish-subscribe design

pattern (pubsub) 468

Q
quality settings

URL 439
Quixel DDO

URL 180
Quixel NDO

URL 180

R
radar

displaying, for object relative location
indication 39-45

radio buttons
using 59

Ragdoll physics
applying, to character 298-302

Ragdoll wizard 298, 302
random spawn point

finding 320-322
ReadPixel function 412
record circle button 27
Rect Transform component 3
reflection 468
Reflection Probes

about 211
baked 237
custom 237
Realtime Reflection Probes 236, 237
URL 237
used, for reflecting surrounding

objects 230-237
Reflection Sources 211
respawn position

creating 326-328
Reverb Presets 361
Reverb Zones

Reverb settings, creating 361
used, for simulating acoustic

environments 358-361
Rich Text

URL 8
used, for styling substrings 8

rigid props
adding, to animated characters 291-294

538

Root Motion
applying 286
used, for moving character 265-272

run-time 507

S
screen content

textures, applying to material 196
textures, making from 191-196
textures, using as screenshot 196

scripted methods
used, for moving elements 30, 31

script efficiency
improving, tips 505

Shader 502
Shader Calibration Scene 145
sibling depth

about 28
implementing, with Toggle Group 3

simple scene
lighting, with Lightmaps 241-254
lighting, with Light Probes 241-254

single object pickups
displaying, with carrying icon 80-83
displaying, with carrying text 73-77
displaying, with not-carrying icon 80-83
displaying, with not-carrying text 73-77
View logic separation 78, 79

slow motion effect
implementing 440-443
Motion Blur, adding 443
slider, customizing 443
sonic ambience, creating 443

Smoothness maps 143, 144
snapshots

about 352
applying, to background noise 382
Audio File Formats, dealing with 382
compression rates, dealing with 382
effects, using 383
multiple audio clips need, reducing 382
used, for creating dynamic

soundtracks 375-382
SpaceGirl game

about 67
creating 67-72

Space-Time Tradeoff
about 496
URL 496

spawn points
errors, avoiding due to empty array 324, 325
nearest spawn point, selecting 323, 324
selecting 320-323

Specular Setup workflow 141
Spot Light cookies

creating 219
URL 219

sprite
flipping, horizontally 120-122

sprite sheet
animation clips, creating from 136-138

Standard Shader (Specular Setup)
about 143
basic material, adapting to Metallic 153-155
documentation 145
emission map 145
Heightmap 145
map, combining with color 152
Metallic workflow 144
Normal map 145
occlusion map 145
other material properties 145
samples 145
specular workflow 143
texture type of image file, setting 152
used, for creating basic material 145-152

Start() method 45
State Design Pattern

used, for managing state-driven
behavior 452-457

state-driven behavior
managing, with State Design

Pattern 452-456
State Pattern

references 506
static batching

about 500
implementing 501

static properties
used, for loading player data 403-405
used, for saving player data 403-405

539

stretched image
displaying 19-21
Sprites and UI Image components,

working with 21
substance files 142
Substance Painter

URL 179
Sub-State Machines

animation states, organizing 280-285
surrounding objects

reflecting, with Reflection Probes 230-237
Swarm class

droneCount variable 349
dronePrefab variable 349
Drone variable 349

SwitchCamera function 191

T
Tags 302
telescopic camera

zooming 196-199
text file map

game data, loading 416-421
text totals

multiple pickups of different objects,
displaying as 98

used, for displaying multiple pickups of
same object 84

texture maps
creating 142
saving 142

three-frame animation clip
creating 129-131

three-state game
creating, with single GameManager

class 446-452
Toggle Groups

radio buttons, using 59, 60
User interaction Toggles button 59, 60

tools
Bitmap2Material 179
Mari 180
Quixel DDO 180
Quixel NDO 180
Substance Painter 179

torso, character
rotating 303-307

track 326
Trigger

used, for moving animations 131-135

U
UI buttons

button mouse-over, visual animation 25, 26
button properties, animating on mouse

over 26, 27
creating, for navigating between

scenes 22-25
UI Grid Layout Groups

grid cells, automated resizing 115, 116
help methods, adding to Rect Transform

script class 116, 117
horizontal scrollbar, adding to inventory

display 111-113
PlayerInventoryDisplay, automation 113-115
used, for generalizing multiple icon

displays 102-110
UI Slider

countdown timer, displaying graphically
with 35-38

Unity
coroutines, URL 323
documentation, URL 145, 273
logs files, URL 478
URL 334

Unity 2D
animation, creating 120
reference links 139

Unity Cloud
publishing, for multiple devices via 428-432
references, URL 432

Unity Default Resources
used, for loading audio files 396
used, for loading external resource

files 394-396
used, for loading text files 396
used, for playing audio files 396

Unity project code
command line, using 428

540

Distributed Version Control Systems
(DVCS) 427

managing, with GitHub hosting 421-427
managing, with Git version control 421-427

Unity Sprite Editor
URL 138

Update() method 46
UpdateScoreText class 405
UpdateStarText() method 77, 86
UpdateTimeDisplay() method 460
user interaction Input Field

C# method, executing 57, 58
used, for text entry 55-57

User interaction Toggles
using 59

User Interface (UI)
about 2-5
canvas 2
creating, with Fungus open source dialog

system 49-52
EventSystem GameObject 2
interaction UI controls 3
panel 2
Rect Transform component 3
Sibling Depth 3
visual UI controls 2

UV channels 172

V
Vector3 class 310
vertex attributes

calculating 502
vertex painting

used, for reducing texture need 502
Vertical Axis 271
volume control

adding, with Audio Mixers 366-374

W
water platform block

creating 132-135
WayPoint class

using 342, 344
waypoints

arrays, using 341, 342
NavMeshes, using 341

WWW class
URL 400
using 393

Y
Yannick 393
yaw angle 47

Thank you for buying
Unity 5.x Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Unity Android Game
Development
ISBN: 978-1-78439-469-1 Paperback: 338 pages

Learn to create stunning Android games using Unity

1. Leverage the new features of Unity 5 for the
Android mobile market with hands-on projects
and real-world examples.

2. Create comprehensive and robust games using
various customizations and additions available in
Unity such as camera, lighting, and sound effects.

3. Precise instructions to use Unity to create an
Android-based mobile game.

Learning Unity 2D Game
Development by Example
ISBN: 978-1-78355-904-6 Paperback: 266 pages

Create your own line of successful 2D games with Unity!

1. Dive into 2D game development with no previous
experience.

2. Learn how to use the new Unity 2D toolset.

3. Create and deploy your very own 2D game with
confidence.

Please check www.PacktPub.com for information on our titles

Mastering Unity 4 Scripting
[Video]
ISBN: 978-1-84969-614-2 Duration: 01:39 hours

Master Unity 4 gameplay scripting with this dynamic
video course

1. Master Unity scripting using C# through
step-by-step demonstrations.

2. Create enemy AI systems.

3. Script character animations.

4. Program directional and conditional sound
effects as well as background music.

Unity 4.x Cookbook
ISBN: 978-1-84969-042-3 Paperback: 386 pages

Over 100 recipes to spice up your Unity skills

1. A wide range of topics are covered, ranging in
complexity, offering something for every Unity 4
game developer.

2. Every recipe provides step-by-step instructions,
followed by an explanation of how it all works,
and alternative approaches or refinements.

3. Book developed with the latest version of
Unity (4.x).

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Core UI – Messages, Menus, Scores, and Timers
	Introduction
	Displaying a "Hello World" UI text message
	Displaying a digital clock
	Displaying a digital countdown timer
	Creating a message that fades away
	Displaying a perspective 3D text message
	Displaying an image
	Creating UI Buttons to move between scenes
	Organizing images inside panels and changing panel depths via buttons
	Displaying the value of an interactive
UI Slider
	Displaying a countdown timer graphically with a UI Slider
	Displaying a radar to indicate the relative locations of objects
	Creating UIs with the Fungus open-source dialog system
	Setting custom mouse cursor images
	Input Fields component for text entry
	Toggles and radio buttons via Toggle Groups
	Conclusion

	Chapter 2: Inventory GUIs
	Introduction
	Creating a simple 2D mini-game – SpaceGirl
	Displaying single object pickups with carrying and not-carrying text
	Displaying single object pickups with carrying and not-carrying icons
	Displaying multiple pickups of the same object with text totals
	Displaying multiple pickups of the same object with multiple status icons
	Revealing icons for multiple object pickups by changing the size of a tiled image
	Displaying multiple pickups of different objects as a list of text via a dynamic List<> of PickUp objects
	Displaying multiple pickups of different objects as text totals via a dynamic Dictionary<> of PickUp objects and "enum" pickup types
	Generalizing multiple icon displays using UI Grid Layout Groups (with scrollbars!)
	Conclusion

	Chapter 3: 2D Animation
	Introduction
	Flipping a sprite horizontally
	Animating body parts for character movement events
	Creating a 3-frame animation clip to make a platform continually animate up and down
	Making a platform start falling once stepped on using a Trigger to move animation from one state to another
	Creating animation clips from sprite sheet sequences
	Conclusion

	Chapter 4: Creating Maps and Materials
	Introduction
	Creating a basic material with Standard Shader (Specular setup)
	Adapting a basic material from Specular setup to Metallic
	Applying Normal maps to a material
	Adding Transparency and Emission maps to a material
	Highlighting materials at mouse over
	 Adding Detail maps to a material
	Fading the transparency of a material
	Playing videos inside a scene
	Conclusion

	Chapter 5: Using Cameras
	Introduction
	Creating a picture-in-picture effect
	Switching between multiple cameras
	Making textures from screen content
	Zooming a telescopic camera
	Displaying a mini-map
	Creating an in-game surveillance camera

	Chapter 6: Lights and Effects
	Introduction
	Using lights and cookie textures to simulate a cloudy day
	Adding a custom Reflection map to a scene
	Creating a laser aim with Projector and Line Renderer
	Reflecting surrounding objects with Reflection Probes
	Setting up an environment with Procedural Skybox and Directional Light
	Lighting a simple scene with Lightmaps and Light Probes
	Conclusion

	Chapter 7: Controlling 3D Animations
	Introduction
	Configuring a character's Avatar and idle animation
	Moving your character with root motion and Blend Trees
	Mixing animations with Layers and Masks
	Organizing States into Sub-state Machines
	Transforming the Character Controller via script
	Adding rigid props to animated characters
	Using Animation Events to throw an object
	Applying Ragdoll physics to a character
	Rotating the character's torso to aim a weapon

	Chapter 8: Positions, Movement and Navigation for Character GameObjects
	Introduction
	Player control of a 2D GameObject (and limiting the movement within a rectangle)
	Player control of a 3D GameObject (and limiting the movement within a rectangle)
	Choosing destinations – find the nearest
(or a random) spawn point
	Choosing destinations – respawn to the most recently passed checkpoint
	NPC NavMeshAgent control to seek or flee destination while avoiding obstacles
	NPC NavMeshAgent to follow the waypoints in a sequence
	Controlling the object group movement through flocking
	Conclusion

	Chapter 9: Playing and Manipulating Sounds
	Introduction
	Matching the audio pitch to the animation speed
	Simulating acoustic environments with Reverb Zones
	Preventing an Audio Clip from restarting if it is already playing
	Waiting for audio to finish playing before auto-destructing an object
	Adding volume control with Audio Mixers
	Making a dynamic soundtrack with Snapshots
	Balancing in-game audio with Ducking

	Chapter 10: Working with External Resource Files and Devices
	Introduction
	Loading external resource files – using
Unity Default Resources
	Loading external resource files – by downloading from the Internet
	Loading external resource files – by manually storing files in the Unity Resources folder
	Saving and loading player data – using static properties
	Saving and loading player data – using PlayerPrefs
	Saving screenshots from the game
	Setting up a leaderboard using PHP/MySQL
	Loading game data from a text file map
	Managing Unity project code using Git version control and GitHub hosting
	Publishing for multiple devices via
Unity Cloud

	Chapter 11: Improving Games with Extra Features and Optimization
	Introduction
	Pausing the game
	Implementing slow motion
	Preventing your game from running on unknown servers
	State-driven behavior Do-It-Yourself states
	State-driven behavior using the State Design pattern
	Reducing the number of objects by destroying objects at death time
	Reducing the number of enabled objects by disabling objects whenever possible
	Reducing the number of active objects by making objects inactive whenever possible
	Improving efficiency with delegates and events and avoiding SendMessage!
	Executing methods regularly but independent of frame rate with coroutines
	Spreading long computations over several frames with coroutines
	Evaluating performance by measuring max and min frame rates (FPS)
	Identifying performance bottlenecks with the Unity performance Profiler
	Identifying performance "bottlenecks" with Do-It-Yourself performance profiling
	Cache GameObject and component references to avoid expensive lookups
	Improving performance with LOD groups
	Improving performance through reduced
	draw calls by designing for draw call batching
	Conclusion

	Chapter 12: Editor Extensions
	Introduction
	An editor extension to allow pickup type and parameters to be changed at designtime via a custom Inspector UI
	An editor extension to add 100 randomly
located copies of a prefab with one
menu click
	A progress bar to display proportion completed of Editor extension processing
	An editor extension to have an object-creator GameObject, with buttons to instantiate different pickups at cross-hair object location in scene
	Conclusion

	Index

